Solar Energy News  
STELLAR CHEMISTRY
Researchers discover new way to split and sum photons with silicon
by Staff Writers
Austin TX (SPX) Dec 03, 2019

Silicon nanocrystals are formed by a silane gas in a plasma process.

A team of researchers at The University of Texas at Austin and the University of California, Riverside have found a way to produce a long-hypothesized phenomenon - the transfer of energy between silicon and organic, carbon-based molecules - in a breakthrough that has implications for information storage in quantum computing, solar energy conversion and medical imaging.

Silicon is one of the planet's most abundant materials and a critical component in everything from the semiconductors that power our computers to the cells used in nearly all solar energy panels. For all of its abilities, however, silicon has some problems when it comes to converting light into electricity.

Different colors of light are comprised of photons, particles that carry light's energy. Silicon can efficiently convert red photons into electricity, but with blue photons , which carry twice the energy of red photons, silicon loses most of their energy as heat.

The new discovery provides scientists with a way to boost silicon's efficiency by pairing it with a carbon-based material that converts blue photons into pairs of red photons that can be more efficiently used by silicon. This hybrid material can also be tweaked to operate in reverse, taking in red light and converting it into blue light, which has implications for medical treatments and quantum computing.

"The organic molecule we've paired silicon with is a type of carbon ash called anthracene. It's basically soot," said Sean Roberts, a UT Austin assistant professor of chemistry. The paper describes a method for chemically connecting silicon to anthracene, creating a molecular power line that allows energy to transfer between the silicon and ash-like substance. "We now can finely tune this material to react to different wavelengths of light. Imagine, for quantum computing, being able to tweak and optimize a material to turn one blue photon into two red photons or two red photons into one blue. It's perfect for information storage."

For four decades, scientists have hypothesized that pairing silicon with a type of organic material that better absorbs blue and green light efficiently could be the key to improving silicon's ability to convert light into electricity.

But simply layering the two materials never brought about the anticipated "spin-triplet exciton transfer," a particular type of energy transfer from the carbon-based material to silicon, needed to realize this goal. Roberts and materials scientists at UC Riverside describe how they broke through the impasse with tiny chemical wires that connect silicon nanocrystals to anthracene, producing the predicted energy transfer between them for the first-time.

"The challenge has been getting pairs of excited electrons out of these organic materials and into silicon. It can't be done just by depositing one on top of the other," Roberts said. "It takes building a new type of chemical interface between the silicon and this material to allow them to electronically communicate."

Roberts and his graduate student Emily Raulerson measured the effect in a specially designed molecule that attaches to a silicon nanocrystal, the innovation of collaborators Ming Lee Tang, Lorenzo Mangolini and Pan Xia of UC Riverside. Using an ultrafast laser, Roberts and Raulerson found that the new molecular wire between the two materials was not only fast, resilient and efficient, it could effectively transfer about 90% of the energy from the nanocrystal to the molecule.

"We can use this chemistry to create materials that absorb and emit any color of light," said Raulerson, who says that, with further finetuning, similar silicon nanocrystals tethered to a molecule could generate a variety of applications, from battery-less night-vision goggles to new miniature electronics.

Other highly efficient processes of this sort, called photon up-conversion, previously relied on toxic materials. As the new approach uses exclusively nontoxic materials, it opens the door for applications in human medicine, bioimaging and environmentally sustainable technologies, something that Roberts and fellow UT Austin chemist Michael Rose are working towards.

At UC Riverside, Tang's lab pioneered how to attach the organic molecules to the silicon nanoparticles, and Mangolini's group engineered the silicon nanocrystals.

"The novelty is really how to get the two parts of this structure - the organic molecules and the quantum confined silicon nanocrystals - to work together," said Mangolini, an associate professor of mechanical engineering. "We are the first group to really put the two together."

The research is described in a paper out in the journal Nature Chemistry.

Research paper


Related Links
University of Texas at Austin
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
New water-based optical device revolutionizes the field of optics research
Tokyo, Japan (SPX) Nov 21, 2019
Light is versatile in nature. In other words, it shows different characteristics when traveling through different types of materials. This property has been explored in various technologies, but the way in which light interacts with materials needs to be manipulated to get the desired effect. This is done using special devices called light modulators, which have the ability to modify the properties of light. One such property, called the Pockels effect, is seen when an electric field is applied to the m ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Green palm oil push: Kit Kat, Dove makers could face fines

Biotech breakthrough turns waste biomass into high value chemicals

New study analyzes viability of sustainable fuels developed through ORNL process

Researchers design an improved pathway to carbon-neutral plastics

STELLAR CHEMISTRY
NUS researchers create new metallic material for flexible soft robots

NASA takes a cue from Silicon Valley to hatch artificial intelligence technologies

UK online supermarket Ocado strikes AI deal in Japan

An astronaut controls a rover on Earth

STELLAR CHEMISTRY
DTEK reaches 1 GW of renewable energy generation capacity in Ukraine

Global winds reverse decades of slowing and pick up speed

Superconducting wind turbine chalks up first test success

Breaking down controls to better control wind energy systems

STELLAR CHEMISTRY
BMW to build electric Mini in China

VW defends Xinjiang car plant after China cables

US probe faults Uber, human error in self-driving car crash

Uber may contribute more transport pollution than solution: study

STELLAR CHEMISTRY
The impact of molecular rotation on a peculiar isotope effect on water hydrogen bonds

Big plans to save the planet depend on nanoscopic materials improving energy storage

HKU team invents Direct Thermal Charging Cell for converting waste heat to electricity

Researchers visualize bacteria motor in first step toward human-produced electrical energy

STELLAR CHEMISTRY
S. Africa to create extra space for nuclear waste

Russian Greenpeace protests against depleted uranium cargo

New broom at UN nuclear watchdog as Iran tensions rise

Framatome unveils new hot rolling machine at its Rugles factory

STELLAR CHEMISTRY
Canada needs much higher carbon tax to meet climate target: study

Insurer Axa plans total carbon divestment by 2040

Carbon markets: looming climate showdown?

Probe sought over concern China can shut down Philippine power

STELLAR CHEMISTRY
Drogba kicks off 'million trees' project in Ivory Coast

Deforestation in Brazil's Amazon highest since 2008: official

Paying countries not to chop down forests works, study shows

Romania's forests under mounting threat -- along with rangers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.