Solar Energy News  
TECH SPACE
Computers tackle one of chemistry's greatest challenges
by Staff Writers
Bradford, UK (SPX) Nov 17, 2015


Image shows the crystal structure of the hydrated Chloride salt. Drs Neumann, Kendrick and Leusen were the only participants in the blind test to predict this challenging structure. Image courtesy University of Bradford. For a larger version of this image please go here.

Researchers from the University of Bradford have joined forces with German high-tech company, Avant-garde Materials Simulation, to successfully predict the crystal structures of small organic molecules by computational methods without experimental input.

These findings were revealed in the 6th blind test of crystal structure prediction, an exercise conducted by twenty five international research groups that was organised by the Cambridge Crystallographic Data Centre (CCDC).

Crystal structures describe the periodically repeating arrangement of molecules in a material and determine many of a material's properties, such as solubility, dissolution rate, hardness, colour and external shape. The ability to predict crystal structures could therefore enable the design of materials with superior properties, for example the creation of brighter pigments, more effective pharmaceuticals, or even lower calorie foodstuff.

In particular, the pharmaceutical industry would gain huge benefit from being able to reliably predict crystal structure because pharmaceutical molecules are prone to crystallise in more than one crystal structure (or polymorph), depending on the conditions under which the molecule is crystallised.

The specific polymorph that goes into a formulation must be strictly controlled to ensure consistency of delivery to the patient. The ability to predict crystal structures could save pharmaceutical companies time and money by being able to quickly identify and develop polymorphs with superior properties. It would also help pharmaceutical companies with patent protection and product life cycle management.

Different approaches to the problem have been developed and these have been evaluated over the years in international exercises, known as the blind tests of crystal structure prediction. Twenty five research groups who have been developing methods for predicting crystal structures of organic molecules took part in the latest test.

In this test participants were challenged to predict nine recently determined crystal structures of five target compounds given only the chemical diagram of the molecules and conditions of crystallisation, with two sets of predictions allowed per target compound.

Only one group managed to predict nearly all targets correctly. These very successful results were obtained by Dr Marcus Neumann of Avant-garde Materials Simulation and Prof Frank Leusen and Dr John Kendrick of the University of Bradford.

Dr Marcus Neumann, author of the computer program GRACE for crystal structure prediction, which predicted eight out of nine targets correctly in this blind test and eight out of ten targets in the previous two blind tests, said: "Obviously, we are delighted with these results, in particular because unlike in earlier blind tests they have been obtained by a fully automated procedure that can be used as a black box in industrial working environments."

Dr Frank Leusen, Professor of Computational Chemistry, University of Bradford, said: "I am particularly impressed that GRACE correctly predicted the crystal structure of a hydrated chloride salt, which poses a real challenge both in terms of the size of the search problem and in terms of the required accuracy. This result will be of particular interest to the pharmaceutical industry as they often deal with this type of compound."

Dr John Kendrick, University of Bradford, added: "Recent developments within the Grace package meant that the process of predicting the crystal structures in the Blind Test was nearly automatic, very little intervention was required from the user."

Although the whole problem is not solved - the predictions cannot yet explain the influence of solvent, impurities, additives or temperature on the outcome of a crystallisation experiment - these recent results demonstrate significant capabilities in the field.

The results of previous blind tests, in 1999, 2001, 2004, 2007 and 2010, demonstrated that the crystal structures of small organic molecules can be predicted under favourable conditions. Success rates were low in the first three blind tests, but the fourth blind test in 2007 saw a major breakthrough with one group predicting all four target crystal structures, each as their most likely prediction.

This was achieved by the same group of Drs. Neumann, Kendrick and Leusen who collaborated to predict eight out of nine targets in the latest blind test. The target compounds in the fifth blind test in 2010 became significantly more complex, but the success rate remained high, with particularly good results for a large flexible molecule which could be regarded as a prototype pharmaceutical compound.

In the current, sixth, blind test, there were five targets, including a small semi-rigid molecule, a medium sized flexible molecule with five known polymorphs, a hydrated Chloride salt, a co-crystal and a large flexible molecule.

The results were discussed at the Blind Test workshop on 27 and 28 October 2015 at the Cambridge Crystallographic Data Centre and featured in the journal Nature.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Bradford
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Trampolining water droplets
Zurich, Switzerland (SPX) Nov 15, 2015
If you travel by plane in the coming months, you might witness a wintry aviation ritual in which ice and snow are cleared off the wings with a special liquid. That is necessary since tiny water droplets in the air may freeze to ice in certain weather conditions when settling on the aircraft's wings. That, in turn, can lead to turbulent airflow during take-off and hence to reduced lift - a potent ... read more


TECH SPACE
Increasing production of seed oils

Energy-efficient reaction drives ORNL biofuel conversion technology

Vast energy value in human waste

Chesapeake Bay Seed Capital Fund invests $150,000 in Manta Biofuel

TECH SPACE
Humans can empathize with robots

How sensorimotor intelligence may develop

Robot's influent speaking just to get attention from you

'Spring-mass' technology heralds the future of walking robots

TECH SPACE
Prysmian Supplies Cables For The Niagara Wind Farm Project

New Jersey is next for offshore wind energy

Scotland hosting new type of offshore wind program

E.ON finishes German wind farm

TECH SPACE
Human roadblock for Japanese firms developing autonomous cars

Madrid sets speed, parking restrictions to fight pollution

GM to sell Chinese-made cars in the US: report

BMW buys Chinese firm to drive car leasing business

TECH SPACE
New Super H-mode regime could greatly increase fusion power

Daring move for first US-China fusion team

Using hydrogen to enhance lithium ion batteries

Mixing an icy cocktail to safely cool hot plasma

TECH SPACE
Russia's New Nuclear Control System Reduces Radiation Risks

Russia Hopes to Increase Nuclear Energy Projects in Indonesia

CGN wins $7.7 bln Romanian nuclear deal

Australia reveals shortlist for first nuclear waste dump

TECH SPACE
Climate change adaptation in high income countries

EPA boss insists climate reforms will outlast Obama

Africa needs energy for growth, leaders say ahead of climate talks

World in 'uncharted territory' as planet warms 1C, CO2 at new high

TECH SPACE
Scientists date the origin of the cacao tree to 10 million years ago

Increased deforestation could substantially reduce Amazon basin rainfall

Large landowners key to slowing deforestation in Brazil

10 Cambodians arrested over illegal logging patrol murders









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.