Solar Energy News
TIME AND SPACE
Researchers propose new method to measure cosmic expansion
Strong Lensing of Gravitational Waves.
Researchers propose new method to measure cosmic expansion
by Staff Writers
Mumbai, India (SPX) Jul 04, 2023

In 1929, astronomers discovered that galaxies are streaming away from us and each other. They interpreted this observation that the universe is expanding. However, when they measured how fast it is expanding, they got different answers using different methods. The difference continues to be a thorn in their description of the expanding universe.

A team of researchers led by Souvik Jana at the International Centre for Theoretical Sciences, Bengaluru, have proposed a solution. Their paper, to be published in the Physical Review Letters, has been selected as an Editor's suggestion.

The solution hinges on studying gravitational waves, ripples in spacetime, which astronomers first detected in 2015. The team studied how gravity itself affects gravitational waves.

As pairs of black holes merge into a single black hole in a cosmic dance, they emit gravitational waves. As they reach the Earth, kilometre-lengthed detectors help scientists study the properties of the black hole pairs. Massive galaxies occupying the space between the black holes and the Earth change the paths of these spacetime ripples, resulting in the detectors recording multiple copies of the same waves. Astronomers call this phenomenon gravitational lensing.

"We have been observing the gravitational lensing of light for over a century," said Parameswaran Ajith, a co-author of the study. "We expect the first observation of lensed gravitational waves in the next few years!"

In the next two decades, scientists will start running advanced gravitational wave detectors in search of the merging black holes. "Future detectors will be able to see out to much larger distances than the existing ones," explained Shasvath J. Kapadia, from the Inter-University Centre for Astronomy and Astrophysics in Pune, one of the co-authors of the study. Tejaswi Venumadhav from the University of California at Santa Barbara, another co-author, said they will be able to detect weaker gravitational wave signals that get buried in the noise affecting present detectors.

Astronomers estimate that the advanced detectors will record signals from a few million black hole pairs, each merging to form a mega-black hole. Among these, about 10,000 black hole mergers will appear more than once in the same detector due to gravitational lensing.

The team led by Souvik demonstrated that by counting the number of such repeat black hole mergers and studying the delay between them, they can measure the universe's expansion rate. As the data from advanced gravitational wave detectors trickle in over the next two decades, their method can potentially measure the universe's expansion rate accurately.

The team's proposal, said Souvik, does not require knowing the properties of the individual galaxies which create multiple copies of gravitational waves, the distances to the black hole pairs, or even their exact location in the sky. Instead, it only requires an accurate method of knowing which signals are lensed. Scientists are improving their techniques to identify the repeat signals, adds Shasvath.

Gravitational lensing requires the astronomical source to be far away. The black hole pairs fit this criterion, which can originate a whooping 13.3 billion years ago, barely 500 million years old after the universe's birth.

Shasvath cautions that their proposed method will be helpful only when the advanced detectors record millions of black hole mergers. Presently, the team is studying how such a future observation will be able to tell apart different models of the universe that cosmologists have proposed.

The models, the team explained, attempt to solve mysteries of the elusive dark matter, a form of matter that does not interact with light. The dark matter hypothesis solves the astronomer's problem of explaining why galaxies have the observed mass. However, scientists are still unsure of the dark matter's properties, leading to various dark matter models.

The team's ongoing research suggests that future observations of lensed gravitational waves will serve as a tool to study the properties of dark matter.

Research Report:Cosmography Using Strongly Lensed Gravitational Waves from Binary Black Holes

Related Links
Tata Institute of Fundamental Research
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Using lensed gravitational waves to measure cosmic expansion
Santa Barbara CA (SPX) 03, 2023
The universe is expanding; we've had evidence of that for about a century. But just how quickly celestial objects are receding from each other is still up for debate. It's no small feat to measure the rate at which objects move away from each other across vast distances. Since the discovery of cosmic expansion, its rate has been measured and re-measured with increasing precision, with some of the latest values ranging from 67.4 up to 76.5 kilometers per second per megaparsec, which relates the rec ... read more

TIME AND SPACE
New technology will let farmers produce their own fertilizer and e-fuels

Clean, sustainable fuels made 'from thin air' and plastic waste

In Iowa, Asa Hutchinson touts measured approach to green energy transition

Carbon mitigation payments can make bioenergy crops more appealing for farmers

TIME AND SPACE
Will AI really destroy humanity?

UN talks aim to harness AI power and potential

'Godfather of AI' urges governments to stop machine takeover

UK govt hails OpenAI for choosing London base

TIME AND SPACE
New transmission line to carry wind energy electricity from Wyoming to Nevada

Brazil faces dilemma: endangered macaw vs. wind farm

Spire to provide TrueOcean with weather forecasts for offshore wind farm development

Sweden greenlights two offshore windpower farms

TIME AND SPACE
FAA clears California company's flying car for takeoff

Legal battle looms over London's expanding vehicle pollution fee

Vehicle color recognition based on neural networks and multi-scale feature fusion

Strange bedfellows: auto rivals embrace Tesla EV chargers

TIME AND SPACE
China, Russia pledge $1.4 bn for lithium plants in Bolivia

Dual-use rechargeable battery

Norway's quest for 'black gold' from used car batteries

Towards efficient lithium-air batteries with solution plasma-based synthesis of perovskite hydroxide catalysts

TIME AND SPACE
Belgium, French firm seal deal extending nuclear reactors

Zelensky tells Macron Russia planning 'dangerous provocations' at nuclear plant

Ukraine warns against 'panic' after alleged nuclear threat

Framatome selected by US nuclear power plant to provide incore instrumentation

TIME AND SPACE
Why Saudi Arabia's "The Line" isn't a revolution in urban living

Polluting shipping to face climate reckoning

The global search for cooling: an energy-demanding loop

UK criticised for slow implementation of climate commitments

TIME AND SPACE
Turning over a new leaf, Colombian ranchers plant trees

Kenya's Ruto lifts six-year logging ban

Nestle steps up reforestation project in Ivory Coast

Football pitch of tropical forest lost every 5 seconds

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.