Researchers solve major challenge in mass production of low-cost solar cells by Staff Writers New York NY (SPX) Jun 28, 2018
An international team of university researchers reports solving a major fabrication challenge for perovskite cells - the intriguing potential challengers to silicon-based solar cells. These crystalline structures show great promise because they can absorb almost all wavelengths of light. Perovskite solar cells are already commercialized on a small scale, but recent vast improvements in their power conversion efficiency (PCE) are driving interest in using them as low-cost alternatives for solar panels. In the cover article published online for the June 28, 2018 issue of Nanoscale, a publication of the Royal Society of Chemistry, the research team reveals a new scalable means of applying a critical component to perovskite cells to solve some major fabrication challenges. The researchers were able to apply the critical electron transport layer (ETL) in perovskite photovoltaic cells in a new way - spray coating - to imbue the ETL with superior conductivity and a strong interface with its neighbor, the perovskite layer. The research is led by Andre D. Taylor, an associate professor in the NYU Tandon School of Engineering's Chemical and Biomolecular Engineering Department, with Yifan Zheng, the first author on the paper and a Peking University researcher. Co-authors are from the University of Electronic Science and Technology of China, Yale University, and Johns Hopkins University. Most solar cells are "sandwiches" of materials layered in such a way that when light hits the cell's surface, it excites electrons in negatively charged material and sets up an electric current by moving the electrons toward a latticework of positively charged "holes." In perovskite solar cells with a simple planar orientation called p-i-n (or n-i-p when inverted), the perovskite constitutes the light-trapping intrinsic layer (the "i" in p-i-n) between the negatively charged ETL and a positively charged hole transport layer (HTL). When the positively and negatively charged layers are separated, the architecture behaves like a subatomic game of Pachinko in which photons from a light source dislodge unstable electrons from the ETL, causing them to fall toward the positive HTL side of the sandwich. The perovskite layer expedites this flow. While perovskite makes for an ideal intrinsic layer because of its strong affinity both for holes and electrons and its quick reaction time, commercial-scale fabrication has proved challenging partly because it is difficult to effectively apply a uniform ETL layer over the crystalline surface of the perovskite. The researchers chose the compound [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) because of its track record as an ETL material and because PCBM applied in a rough layer offers the possibility of improved conductivity, less-penetrable interface contact, and enhanced light trapping. "Very little research has been done on ETL options for the planar p-i-n design," said Taylor. "The key challenge in planar cells is, how do you actually assemble them in a way that doesn't destroy the adjacent layers?" The most common method is spin casting, which involves spinning the cell and allowing centripetal force to disperse the ETL fluid over the perovskite substrate. But this technique is limited to small surfaces and results in an inconsistent layer that lowers the performance of the solar cell. Spin casting is also inimicable to commercial production of large solar panels by such methods as roll-to-roll manufacture, for which the flexible p-i-n planar perovskite architecture is otherwise well suited. The researchers instead turned to spray coating, which applies the ETL uniformly across a large area and is suitable for manufacturing large solar panels. They reported a 30 percent efficiency gain over other ETLs - from a PCE of 13 percent to over 17 percent - and fewer defects. Added Taylor, "Our approach is concise, highly reproducible, and scalable. It suggests that spray coating the PCBM ETL could have broad appeal toward improving the efficiency baseline of perovskite solar cells and providing an ideal platform for record-breaking p-i-n perovskite solar cells in the near future."
Research Report: "Spray Coating of the PCBM Electron Transport Layer Significantly Improves the Efficiency of p-i-n Planar Perovskite Solar Cells"
ABB to install multipurpose microgrid in Australia Sydney, Australia (SPX) Jun 22, 2018 ABB will supply a microgrid solution to the Energy Storage for Commercial Renewable Integration (ESCRI) project, which will provide a more secure power supply in an area that has high renewable penetration into the grid. The solution will connect an ABB Ability PowerStore 30 megawatt (MW) battery energy storage solution to the Electranet transmission system enabling the value stacking of storage in regulated energy market. In Australia, the increase of intermittent renewables within the power grid ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |