Solar Energy News  
CLIMATE SCIENCE
Researchers tackle methane emissions with gas-guzzling bacteria
by Staff Writers
Melbourne, Australia (SPX) Aug 31, 2017


The sampling site used to isolate the methanotroph, namely a geothermal field in Rotokawa, New Zealand. Image courtesy Dr Carlo Carere (GNS Science).

An international research team co-led by a Monash biologist has shown that methane-oxidising bacteria - key organisms responsible for greenhouse gas mitigation - are more flexible and resilient than previously thought.

Soil bacteria that oxidise methane (methanotrophs) are globally important in capturing methane before it enters the atmosphere, and we now know that they can consume hydrogen gas to enhance their growth and survival.

This new research, published in the prestigious International Society for Microbial Ecology Journal, has major implications for greenhouse gas mitigation.

Industrial companies are using methanotrophs to convert methane gas emissions into useful products, for example liquid fuels and protein feeds.

"The findings of this research explain why methanotrophs are abundant in soil ecosystems," said Dr Chris Greening from the Centre for Geometric Biology at Monash University.

"Methane is a challenging energy source to assimilate.

"By being able to use hydrogen as well, methanotrophs can grow better in a range of conditions."

Methanotrophs can survive in environments when methane or oxygen are no longer available.

"It was their very existence in such environments that led us to investigate the possibilities that these organisms might also use other energy-yielding strategies," Dr Greening said.

Dr Greening's lab focuses on the metabolic strategies that microorganisms use to persist in unfavourable environments and he studies this in relation to the core areas of global change, disease and biodiversity.

In this latest study, Dr Greening and collaborators isolated and characterised a methanotroph from a New Zealand volcanic field. The strain could grow on methane or hydrogen separately, but performed best when both gases were available.

"This study is significant because it shows that key consumers of methane emissions are also able to grow on inorganic compounds such as hydrogen," Dr Greening said.

"This new knowledge helps us to reduce emissions of greenhouse gases. "

Industrial processes such as petroleum production and waste treatment release large amounts of the methane, carbon dioxide and hydrogen into the atmosphere.

"By using these gas-guzzling bacteria, it's possible to convert these gases into useful liquid fuels and feeds instead," Dr Greening said.

Research paper

CLIMATE SCIENCE
Research identifies new microbe with potential to help rebalance Earth's nitrogen cycle
Edmonton, Canada (SPX) Aug 28, 2017
New research from University of Alberta and University of Vienna microbiologists provides unparalleled insight into the Earth's nitrogen cycle, identifying and characterizing the ammonia-oxidizing microbe, Nitrospira inopinata. The findings, explained Lisa Stein, co-author and professor of biology, have significant implications for climate change research. "I consider nitrogen the camoufla ... read more

Related Links
Monash University
Climate Science News - Modeling, Mitigation Adaptation


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CLIMATE SCIENCE
Researchers identify cheaper, greener biofuels processing catalyst

Technique could aid mass production of biodegradable plastic

How a bacterium can live on methanol

Cyborg bacteria outperform plants when turning sunlight into useful compounds

CLIMATE SCIENCE
New robot rolls with the rules of pedestrian conduct

Illinois researchers develop origami-inspired robot

Smart computers

Designing custom robots in a matter of minutes

CLIMATE SCIENCE
Saudi Arabia shortlists 25 bidders for major wind plant

First foundations set for Baltic Sea wind farm

Wind energy blows up storm of controversy in Mexico

U.S. extends wind energy taproots into Zambia

CLIMATE SCIENCE
Nanoparticles pollution rises 30 percent when flex-fuel cars switch from bio to fossil

New emissions test necessary for new vehicles in the EU

New liquid-metal membrane technology may help make hydrogen fuel cell vehicles viable

Uber to resume Philippine service 'soon' after fine

CLIMATE SCIENCE
Silicon solves problems for next-generation battery technology

Recipe for safer batteries - Just add diamonds

Physicists find strange state of matter in superconducting crystal

No batteries required: Energy-harvesting yarns generate electricity

CLIMATE SCIENCE
Kazakhstan inaugurates IAEA-backed nuclear fuel bank

2018 start for Russia-backed nuclear plant work:

Fukushima operator faces $5 bn US suit over 2011 disaster

UAE nuclear programme edges toward 2018 launch

CLIMATE SCIENCE
ADB: New finance model needed for low-carbon shift in Asia

China merges energy giants into global leader

Power demand to peak in Europe summers, not winters: study

India must rethink infrastructure needs for 100 new 'smart' cities to be sustainable

CLIMATE SCIENCE
Ancient trees reveal relationship between climate change, wildfires

Greenpeace steps up protest against Polish forest logging

Brazil's opening of Amazon to mining sets off alarm

Annual value of trees estimated at 500 million dollars per megacity









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.