Solar Energy News  
FARM NEWS
Researchers unravel powerful tool in maize breeding
by Staff Writers
Heidelberg, Germany (SPX) Feb 24, 2017


File image.

A common strategy to create high-yielding plants is hybrid breeding - crossing two different inbred lines to obtain characteristics superior to each parent. However, getting the inbred lines in the first place can be a hassle. Inbred lines consist of genetically uniform individuals and are created through numerous generations of self-crossing. In maize, the use of so-called "haploid inducers" provides a short cut to this cumbersome procedure, allowing to produce inbred lines in just one generation.

A study by Laurine Gilles and colleagues, published in The EMBO Journal, sheds light on the genetics behind haploid induction. "Knowing the molecular identity of haploid induction represents an important breakthrough to fully understand the fertilization process in plants, and hopefully will allow to translate this breeding tool to other species," said the study's senior author Dr. Thomas Widiez, an INRA (Institut National de la Recherche Agronomique) researcher at the Ecole Normale Superieure in Lyon, France.

Haploid inducers were first discovered in the 1950s. Pollination of female flower with pollen of a haploid inducer strain will yield offspring that are haploid, meaning that they will only contain one single copy of each gene as opposed to the usual two copies. All their genetic material comes from the mother. Treating these haploid plants with a chemical that causes chromosome doubling will lead to plants with two identical copies of all genes in just one generation. With classical inbreeding, this condition takes seven to ten years to achieve.

Haploid offspring in maize are not unusual; they emerge naturally, albeit at a very low rate. Haploid inducers can bring this rate up to about 10% of the progeny being haploid - enough to make it a useful tool for breeders.

More than 50 years after the discovery of haploid inducers, Widiez and his team, in collaboration with Limagrain, have now identified the gene that mainly causes the phenomenon and termed it Not Like Dad to highlight the fact that its dysfunction induces embryos without genetic contribution from the father. The gene product is necessary for successful fertilization so that its failure promotes the formation of haploid embryos. Two other research groups have in parallel identified the same gene and come to similar conclusions.

Haploid inducers are nowadays powerful breeding tools, but as yet the technology is restricted to maize, while in-vitro haploid induction in certain crops is labor-intense. Understanding the genes and molecular mechanism behind the process will help translate this technology to other crops. The identification of Not Like Dad is an important step to this end.

While Not Like Dad is the most important contributor to haploid induction in inducer lines, there are at least seven more genes that play a role in increasing the rate of haploid offspring. Revealing their molecular identity, as well as understanding their mode of action, will be important to fully understand the process.

Research paper: "Loss of pollen-specific phospholipase Not Like Dad (NLD) triggers gynogenesis in maize"

FARM NEWS
French Greens offer hair to highlight pesticide risks
Paris (AFP) Feb 23, 2017
Seven top French environmentalists including a presidential candidate have had their hair tested to draw attention to the prevalence of pesticides and other pollutants in daily life. The samples contained a "large cocktail of many endocrine disruptors", which can cause tumours, birth defects and other disorders, Generations Futures, an association that campaigns against pesticides and GMOs, ... read more

Related Links
EMBO
Farming Today - Suppliers and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

FARM NEWS
Scientists use nanoparticles, ultraviolet light to turn CO2 into fuel

Alberta backing bioenergy programs

A better way to farm algae

DuPont Industrial Biosciences to develop new high-efficiency biogas enzyme method

FARM NEWS
Study: Even 'benevolent bots' fight, sometimes for years

Scientists invent new, faster gait for six-legged robots

Now you can 'build your own' bio-bot

How algorithms secretly run the world

FARM NEWS
US grid can handle more offshore wind power

Michigan meets renewable energy targets

British grid drawing power from new offshore wind farm

Prysmian UK to supply land cable connections for East Anglia ONE offshore wind farm

FARM NEWS
Kymeta aimes to deliver terabyte connectivity to the car of the future

Tesla slips back into red but revenue grows

Roads are driving rapid evolutionary change in our environment

Four-stroke engine cycle produces hydrogen from methane and captures CO2

FARM NEWS
Stabilizing energy storage

Looking for the next leap in rechargeable batteries

Squishy supercapacitors bathed in green tea could power wearable electronics

Looking for the next leap in rechargeable batteries

FARM NEWS
German energy giant RWE posts 5.7-bln-euro loss in 2016

Russia's Rosatom Subsidiaries Produced 7,900 Tonnes of Uranium in 2016

China delays nuclear reactor start again

System automatically detects cracks in nuclear power plants

FARM NEWS
New Zealand lauded for renewables, but challenges remain

EU parliament backs draft carbon trading reforms

Taiwan lantern makers go green for festival of lights

Republican ex-top diplomats propose a carbon tax

FARM NEWS
Forests worldwide threatened by drought

Study: The forest is getting farther away, especially in rural America

Myanmar makes record seizures of illegal timber

Laissez-faire is not good enough for reforestation









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.