Solar Energy News  
CARBON WORLDS
Researchers use recycled carbon fiber to improve permeable pavement
by Staff Writers
Pullman WA (SPX) Mar 06, 2018

Water runs through Washington State University pervious pavement.

A Washington State University research team is solving a high-tech waste problem while addressing the environmental challenge of stormwater run-off. The researchers have shown they can greatly strengthen permeable pavements by adding waste carbon fiber composite material. Their recycling method, described in the March issue of the Journal of Materials in Civil Engineering, doesn't require using much energy or chemicals - a critical factor for recycling waste materials.

Unlike the impermeable pavement that is used for most roads and parking lots, pervious concrete allows rainwater to freely drain and seep into the ground underneath. Because of increasing concerns about flooding in urban areas and requirements for controlling stormwater run-off, several cities have tried using the pervious concrete in parking lots and low-traffic streets. But because it is highly porous, it is not as durable as the traditional concrete that is used on major roads.

Recycling carbon fiber
Carbon fiber composites, meanwhile, have become increasingly popular in numerous industries. Super light and strong, the material is used in everything from airplane wings to wind turbines and cars. While the market is growing about 10 percent per year, however, industries have not figured out a way to easily recycle their waste, which is as much as 30 percent of the material used in production.

Led by Karl Englund, associate research professor, and Somayeh Nassiri, assistant professor in the Department of Civil and Environmental Engineering, the researchers added carbon fiber composite scrap that they received from Boeing manufacturing facilities to their pervious concrete mix.

They used mechanical milling to refine the composite pieces to the ideal sizes and shapes. The added material greatly increased both the durability and strength of pervious concrete.

"In terms of bending strength, we got really good results - as high as traditional concrete, and it still drains really quickly," said Nassiri.

sMilling vs. heat or chemicals
The researchers used inexpensive milling techniques instead of heat or chemicals to create a reinforcing element from the waste carbon fiber composites. They maintained and made use of the original strength of the composites by keeping them in their cured composite form. Their mix also required using a lot of the composite material, which would be ideal for waste producers.

"You're already taking waste - you can't add a bunch of money to garbage and get a product," said Englund. "The key is to minimize the energy and to keep costs down."

The composite materials were dispersed throughout the pavement mix to provide uniform strength.

Testing and mainstreaming
While they have shown the material works at the laboratory scale, the researchers are beginning to conduct real-world tests on pavement applications. They are also working with industry to begin developing a supply chain.

"In the lab this works to increase permeable pavement's durability and strength," said Nassiri. "The next step is to find out how to make it mainstream and widespread."

The research for this project was made possible through a partnership with the Boeing Company.

Research paper


Related Links
Washington State University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
Method of tracking reactions between air and carbon-based compounds established
Blacksburg VA (SPX) Mar 01, 2018
By being the first to fully track the changing chemistry of carbon molecules in the air, a Virginia Tech professor could change the way we study pollutants, smog, and emissions to the atmosphere. Gabriel Isaacman-VanWertz, lead scientist on a new study published in Nature Chemistry and assistant professor in Virginia Tech's department of civil and environmental engineering, has established a method of tracking reactions between air and carbon-based compounds - a feat that has been previously elusi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Malaysia to press EU on planned palm oil ban in biofuels

Digestive ability of ancient insects could boost biofuel development

New tool tells bioengineers when to build microbial teams

Pausing evolution makes bioproduction of chemicals affordable and efficient

CARBON WORLDS
Beware of replicating sexism in AI, experts warn

Berkeley Lab 'minimalist machine learning' algorithms analyze images from very little data

Snake-inspired robot uses kirigami to move

Robotic crystals that walk n' roll

CARBON WORLDS
Windlab exceeds prospectus forecast; scales up operations

A huge component of German wind farm has left shore

World's first floating wind farm put to the test

New wind farm construction starts in Italy

CARBON WORLDS
Infineon, SAIC set up electric car joint venture in China

Rome to ban diesel cars from 2024: mayor

German court paves way for diesel driving bans

Car-mad Germany anxious as court to rule on diesel bans

CARBON WORLDS
Scientists confirm century-old speculation on the chemistry of a high-performance battery

Scientists take step toward safer batteries by trimming lithium branches

A lithium battery that operates at -70 degrees Celsius, a record low

New computation help identify new solid oxide fuel cell materials

CARBON WORLDS
Framatome completes purchase of Schneider Electric's instrumentation and control nuclear business

Police tear gas anti-nuclear protesters in France

Greenpeace protesters jailed for French nuclear stunt

Austria sues over EU approval of Hungary nuclear plant

CARBON WORLDS
Puerto Rico power grid snaps, nearly 1 million in the dark

Grids from Turkmenistan, Afghanistan and Pakistan could be connected

Coal phase-out: Announcing CO2-pricing triggers divestment

State utilities called to pass U.S. tax benefits to consumers

CARBON WORLDS
Honduras energy executive arrested over activist murder

Geological change confirmed as factor behind extensive diversity in tropical rainforests

Reforesting US topsoils store massive amounts of carbon, with potential for much more

Drier conditions could doom Rocky Mountain spruce and fir trees









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.