Solar Energy News
TECH SPACE
Rice lab finds better way to handle hard-to-recycle material
Process transforms glass fiber-reinforced plastic into silicon carbid.
Rice lab finds better way to handle hard-to-recycle material
by Kayt Sukel for Rice News
Houston TX (SPX) Mar 04, 2024

Glass fiber-reinforced plastic (GFRP), a strong and durable composite material, is widely used in everything from aircraft parts to windmill blades. Yet the very qualities that make it robust enough to be used in so many different applications make it difficult to dispose of ? consequently, most GFRP waste is buried in a landfill once it reaches its end of life.

According to a study published in Nature Sustainability, Rice University researchers and collaborators have developed a new, energy-efficient upcycling method to transform glass fiber-reinforced plastic (GFRP) into silicon carbide, widely used in semiconductors, sandpaper and other products.

"GFRP is used to make very large things, and for the most part, we end up burying the wing structures of airplanes or windmill blades from a wind turbine whole in a landfill," said James Tour, the T.T. and W.F. Chao Professor and professor of chemistry and of materials science and nanoengineering. "Disposing of GFRP this way is just unsustainable. And until now there has been no good way to recycle it."

With increased pressure from regulatory agencies to revise and improve recycling practices for end-of-life vehicles, there is a strong need for better methods to manage GFRP waste. While some have tried to develop approaches using incineration or solvolysis to get rid of GFRP, Yi Cheng, a postdoctoral research associate and Rice Academy Junior Fellow who works in the Tour lab, said such processes are less than ideal because they are resource-intensive and result in environmental contamination.

"This material has plastic on the surface of glass fiber, and incinerating the plastic can generate a lot of toxic gases," Cheng said. "Trying to dissolve GFRP is also problematic as it can generate a lot of acid or base waste from the solvents. We wanted to find a more environmentally friendly way to deal with this material."

Tour's lab has already made Rice lab finds better way to handle hard-to-recycle materials for developing new waste disposal and recycling applications using flash Joule heating, a technique that passes a current through a moderately resistive material to quickly heat it to exceptionally high temperatures and transform it into other substances. Tour said when he learned of the issues involved with GFRP disposal from colleagues at the Defense Advanced Research Projects Agency, he thought that this kind of turbo-heating could transform GFRP into silicon carbide, widely used in semiconductors and sandpaper.

"We already knew that if we heat the mixture of metal chloride and carbon by flash Joule heating, we could get metal carbide ? and in one demonstration, we made silicon carbide," Tour said. "So we were able to leverage that work to come up with a process to transform GFRP into silicon carbide."

This new process grinds up GFRP into a mixture of plastic and carbon and involves adding more carbon, when necessary, to make the mixture conductive. The researchers then apply high voltage to it using two electrodes, bringing its temperature up to 1,600-2,900 degrees Celsius (2,912-5,252 Fahrenheit).

"That high temperature facilitates the transformation of the plastic and carbon to silicon carbide," Tour explained. "We can make two different kinds of silicon carbide, which can be used for different applications. In fact, one of these types of silicon carbide shows superior capacity and rate performance as battery anode material."

While this initial study was a proof-of-concept test on a bench scale in the laboratory, Tour and colleagues are already working with outside companies to scale up the process for wider use. The operating costs to upcycle GFRP are less than $0.05 per kilogram, much cheaper than incineration or solvolysis ? and more environmentally friendly.

It will take time ? and some good engineering ? to appropriately scale up this new flash upcycling method, Tour said. He said he is thrilled that his lab was able to develop a sustainable way to transform GFRP trash into silicon carbide treasure.

"This GFRP is a waste product which usually ends up in a landfill, and now you can turn it into a usable product that can help humankind," he said. "This is exactly the kind of approach we need to support a circular economy. We need to find ways to take waste products from a wide variety of different applications and turn them into new products."

Research Report:Flash upcycling of waste glass fiber-reinforced plastics to silicon carbide

Related Links
Rice University
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
Scientists at uOttawa reveal how light behaves in formless solids
Ottawa, Canada (SPX) Mar 01, 2024
For a long time, it was thought that amorphous solids do not selectively absorb light because of their disordered atomic structure. However, a new uOttawa study disproves this theory and shows that amorphous solids actually exhibit dichroism, meaning that they selectively absorb light of different polarizations. Researchers at the University of Ottawa have found that using helical light beams in disordered solids reveals a phenomenon known as dichroism, which is differential absorption of light. T ... read more

TECH SPACE
Greenhouse gas repurposed in University of Auckland experiments

Inexpensive, carbon-neutral biofuels are finally possible

Watching the enzymes that convert plant fiber into simple sugars

Microbial division of labor produces higher biofuel yields

TECH SPACE
Vatican names Google AI boss to scientific academy

Sam Altman returns to OpenAI board months after crisis

AI the new obsession for venture capital investing

Zuckerberg discusses AI risks with Japan PM during Asia tour

TECH SPACE
Wind-powered Dutch ship sets sail for greener future

Leaf-shaped generators create electricity from the wind and rain

European offshore wind enjoys record year in 2023

Danish firm to build huge wind farm off UK

TECH SPACE
Xiaomi announces release date for first EV, shares surge

Italy says it wants Chinese carmakers but only under conditions

France's EDF teams up with Morrison to nearly double EV fast chargers network

Nissan plans self-driving taxi service in Japan

TECH SPACE
Preventing Magnet Meltdowns Before They Can Start

Power when the sun doesn't shine

UK 'net zero' economy bucks recession: study

Tests show high-temperature superconducting magnets are ready for fusion

TECH SPACE
Orano secures uranium enrichment services deal with CEZ

Framatome partners with TerraPower for Natrium reactor fuel handling equipment design

IAEA warns against restarting Ukraine nuclear plant

IAEA chief to hold talks with Putin about Ukraine nuclear plant

TECH SPACE
Stormclouds gather over EU's Green Deal

Climate perils costing US 0.4% of its GDP: Swiss Re

World needs 'trillions' for climate action: COP28 president

Sounding warning, Kerry urges new ways on climate finance

TECH SPACE
Activists occupy German forest to block Tesla expansion

Nearly 3,000 fires in Brazilian Amazon in February, new record

Major firms still failing to tackle deforestation: report

New mayor hopes trees will cool Athens down

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.