. Solar Energy News .




.
CHIP TECH
Rice physicists move one step closer to quantum computer
by Staff Writers
Houston TX (SPX) Oct 07, 2011

In his quest to create a "topological insulator," Rice graduate student Ivan Knez spent hundreds of hours modifying tiny pieces of semiconductors in Rice University's clean room. Credit: Jeff Fitlow/Rice University.

Rice University physicists have created a tiny "electron superhighway" that could one day be useful for building a quantum computer, a new type of computer that will use quantum particles in place of the digital transistors found in today's microchips.

In a recent paper in Physical Review Letters, Rice physicists Rui-Rui Du and Ivan Knez describe a new method for making a tiny device called a "quantum spin Hall topological insulator." The device, which acts as an electron superhighway, is one of the building blocks needed to create quantum particles that store and manipulate data.

Today's computers use binary bits of data that are either ones or zeros. Quantum computers would use quantum bits, or "qubits," which can be both ones and zeros at the same time, thanks to the quirks of quantum mechanics.

This quirk gives quantum computers a huge edge in performing particular types of calculations, said Du, professor of physics and astronomy at Rice. For example, intense computing tasks like code-breaking, climate modeling and biomedical simulation could be completed thousands of times faster with quantum computers.

"In principle, we don't need many qubits to create a powerful computer," he said. "In terms of information density, a silicon microprocessor with 1 billion transistors would be roughly equal to a quantum processor with 30 qubits."

In the race to build quantum computers, researchers are taking a number of approaches to creating qubits. Regardless of the approach, a common problem is making certain that information encoded into qubits isn't lost over time due to quantum fluctuations. This is known as "fault tolerance."

The approach Du and Knez are following is called "topological quantum computing." Topological designs are expected to be more fault-tolerant than other types of quantum computers because each qubit in a topological quantum computer will be made from a pair of quantum particles that have a virtually immutable shared identity. The catch to the topological approach is that physicists have yet to create or observe one of these stable pairs of particles, which are called "Majorana fermions" (pronounced MAH-yor-ah-na FUR-mee-ons).

The elusive Majorana fermions were first proposed in 1937, although the race to create them in a chip has just begun. In particular, physicists believe the particles can be made by marrying a two-dimensional topological insulator - like the one created by Du and Knez - to a superconductor.

Topological insulators are oddities; although electricity cannot flow through them, it can flow around their narrow outer edges. If a small square of a topological insulator is attached to a superconductor, Knez said, the elusive Majorana fermions are expected to appear precisely where the materials meet. If this proves true, the devices could potentially be used to generate qubits for quantum computing, he said.

Knez spent more than a year refining the techniques to create Rice's topological insulator. The device is made from a commercial-grade semiconductor that's commonly used in making night-vision goggles. Du said it is the first 2-D topological insulator made from a material that physicists already know how to attach to a superconductor.

"We are well-positioned for the next step," Du said. "Meanwhile, only experiments can tell whether we can find Majorana fermions and whether they are good candidates for creating stable qubits."

A copy of the PRL paper is available here

Related Links
Rice University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CHIP TECH
New FeTRAM is promising computer memory technology
West Lafayette, IN (SPX) Sep 30, 2011
Researchers are developing a new type of computer memory that could be faster than the existing commercial memory and use far less power than flash memory devices. The technology combines silicon nanowires with a "ferroelectric" polymer, a material that switches polarity when electric fields are applied, making possible a new type of ferroelectric transistor. "It's in a very nascent ... read more


CHIP TECH
Certain biofuel mandates unlikely to be met by 2022

US unlikely to hit Renewable Fuel Standard for cellulosic biofuels

Advancing next gen biofuels by turning up the heat on biomass pretreatment processes

From compost to sustainable fuels as heat loving fungi sequenced

CHIP TECH
Robots are coming to aircraft assembly

Robotic Loader System Achieves Composite Material Testing Milestone

Robonaut Wakes Up In Space

Sandia Labs' Gemini-Scout robot likely to reach trapped miners ahead of rescuers

CHIP TECH
Natural Power US to act as Owner's Engineer on 2.1GW Wyoming wind farm

Natural Power deploys first dual-mode ZephIR wind lidar in India

New energy in search for future wind

Investment blows into India's wind sector

CHIP TECH
Chinese automaker confirms Brazil factory plan

China's LiuGong to buy Polish bulldozer-maker: report

CO2 rules not driving car prices higher

Singapore to tackle jams with car ownership curbs

CHIP TECH
Ecologists urge Obama to stop Canada-US pipeline

Scientists Identify Microbes Responsible for Consuming Natural Gas in Deepwater Horizon Spill

Blasts partially halt output at south Iraq oil field

New Zealand navy called in for oil slick clean up

CHIP TECH
Pear-shaped 110-carat diamond to go under hammer

NIST polishes method for creating tiny diamond machines

Journey to the lower mantle and back

Diamonds show depth extent of Earth's carbon cycle

CHIP TECH
Emissions rising from 'carbonizing dragon'

Japan takes steps to revise energy plan

IMF, World Bank eye carbon tax on airline, ship fuels

U.S. Defense aims for clean energy

CHIP TECH
International bodies to probe crackdown on Bolivia protest

Forest structure, services and biodiversity may be lost even as form remains

USDA: Wood is greenest building material

UN urges cities to protect their trees


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement