Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Rice uses light to remotely trigger biochemical reactions
by Staff Writers
Houston TX (SPX) Dec 18, 2012


The particle at the center of the process is a gold nanorod about 10 nanometers wide and 30 long that heats up when hit with near-infrared light from a laser. The rods are just the right size and shape to react to light at around 800 nanometers. The light excites surface plasmons that ripple like water in a pool, in this case emitting energy as heat.

Since Edison's first bulb, heat has been a mostly undesirable byproduct of light. Now researchers at Rice University are turning light into heat at the point of need, on the nanoscale, to trigger biochemical reactions remotely on demand.

The method created by the Rice labs of Michael Wong, Ramon Gonzalez and Naomi Halas and reported in the American Chemical Society journal ACS Nano makes use of materials derived from unique microbes - thermophiles - that thrive at high temperatures but shut down at room temperature.

The Rice project led by postdoctoral fellow Matthew Blankschien and graduate student Lori Pretzer combines enzymes from these creatures with plasmonic gold nanoparticles that heat up when exposed to near-infrared light. That activates the enzymes, which are then able to carry out their functions.

This effectively allows chemical processes to happen at lower temperatures. Because heating occurs only where needed - at the surface of the nanoparticle, where it activates the enzyme - the environment stays cooler.

Blankschien thinks that's fascinating.

"Basically, we're getting the benefits of high-temperature manufacturing without needing a high-temperature environment," said Blankschien, who won the Peter and Ruth Nicholas Postdoctoral Fellowship two years ago to work on these ideas. "The challenge was to keep the higher temperature at the nanoparticle, where the enzyme is activated, from affecting the environment around it."

The technique holds great potential for industrial processes that now require heat or benefit from remote triggering with light.

"The implications are pretty exciting," said Wong, a professor of chemical and biomolecular engineering and of chemistry. "In the chemical industry, there's always a need for better catalytic materials so they can run reactions more inexpensively, more 'green' and more sustainably. You shouldn't run through gallons of solvent to make a milligram of product, even if you happen to be able to sell it for a lot of money."

For industry, the potential energy savings alone may make the Rice process worth investigating. "Here we're using 'free' energy," Wong said. "Instead of needing a big boiler to produce steam, you turn on an energy-efficient light bulb, like an LED. Or open a window."

The particle at the center of the process is a gold nanorod about 10 nanometers wide and 30 long that heats up when hit with near-infrared light from a laser. The rods are just the right size and shape to react to light at around 800 nanometers. The light excites surface plasmons that ripple like water in a pool, in this case emitting energy as heat.

Halas' Rice lab is famous for pioneering the use of gold nanoshells (a related material) to treat cancer by targeting tumors with particles that are bulk heated to kill tumors from the inside. The therapy is now in human trials.

The new research takes a somewhat different tack by heating nanoparticles draped with a model thermophilic enzyme, glucokinase, from Aeropyrum pernix. A. pernix is a microbe discovered in 1996 thriving near hot underwater vents off the coast of Japan. At around 176 degrees Fahrenheit, A. pernix degrades glucose, a process necessary to nearly every living thing. The enzyme can be heated and cooled repeatedly.

In their experiments, Blankschien and Pretzer cloned, purified and altered glucokinase enzymes so they would attach to the gold nanoparticles. The enzyme/nanoparticle complexes were then suspended in a solution and tested for glucose degradation. When the solution was heated in bulk, they found the complexes became highly active at 176 degrees, as expected.

Then the complexes were encapsulated in a gel-like bead of calcium alginate, which helps keeps the heat in but is porous enough to allow enzymes to react with materials around it. Under bulk heating, the enzymes' performance dropped dramatically because the beads insulated the enzymes too well.

But when encapsulated complexes were illuminated by continuous, near-infrared laser light, they worked substantially better than under bulk heating while leaving the solution at near-room temperature. The researchers found the complexes robust enough for weeks of reuse.

"As far-fetched as it sounds, I think chemical companies will be interested in the idea of using light to make chemicals," Wong said. "They're always interested in new technologies that can help make chemical products more cheaply."

He sees other possible uses for the new approach in the production of fuels from degradation of biomass like lignocellulose; for drug manufacture on demand - maybe from nanoparticle-infused tattoos on the body; or even for lowering blood sugar concentrations as a different way to manage diabetes.

"That we can now make these particles is great," Wong said. "The next exciting part is in thinking about how we can deploy them."

Ryan Huschka, a co-author of the paper, is a former Rice graduate student and now an assistant professor of chemistry at Newman University. Halas is the Stanley C. Moore Professor in Electrical and Computer Engineering, a professor of biomedical engineering, chemistry, physics and astronomy and director of Rice's Laboratory for Nanophotonics. Gonzales is an associate professor of chemical and biomolecular engineering and also of bioengineering

.


Related Links
Rice University
Rice's Laboratory for Nanophotonics
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Adhesion disturbed by noise
Heidelberg, Germany (SPX) Dec 18, 2012
Imagine a solid ball rolling down a slightly inclined ramp. What could be perceived as child's play is the focus of serious theoretical research by Manoj Chaudhury and Partho Goohpattader, two physicists from Lehigh University, Bethlehem, Pensylvania, USA. Their study, which is about to be published in EPJ E, has one thing in common with childhood behaviour. It introduces a mischievous ide ... read more


TECH SPACE
NC State Study Offers Insight Into Converting Wood to Bio-Oil

Can Algae-Derived Oils Support Large-Scale, Low-Cost Biofuels Production?

Plastic packaging industry is moving towards completely bio-based products

Gases from Grasses

TECH SPACE
Research: Tiny robots may think as a group

Custom robots could do Fukushima cleanup

Swimming robot crosses Pacific Ocean

Squirrels and Birds Inspire Researchers to Create Deceptive Robots

TECH SPACE
US confirms duties on 1towers from China, Vietnam

Ground broken on Irish Midlands wind farm

GE, MetLife and Union Bank Invest in Kansas Wind Farm

Wind speeds in southern New England declining inland, remaining steady on coast

TECH SPACE
Volvo Cars says avoiding loss this year 'very difficult'

New Factor could Limit the Life of Hybrid and Electric Car Batteries

Ultrasound can now monitor the health of your car engine

Chinese firm to build electric cars in Bulgaria: report

TECH SPACE
Australia unveils carbon capture plant

Oil prices gain on US budget hopes, as coal set to dominate

Nanofibers clean sulfur from fuel

How to get fossil fuels from ice cream and soap

TECH SPACE
Japanese party victory a boost for nuclear

Japan to host nuclear safety conference in Fukushima

British regulators OK nuke reactor design

EU funds frozen for Lithuanian nuclear decommissioning

TECH SPACE
EU puts 1.2 bn euros into pilot renewable energy projects

Bolivia's eco-friendly trans-oceanic ships

Renewables Provide 46 percent All New US Electrical Generating Capacity in 2012

OpenADR Continues to Move the Smart Grid Forward

TECH SPACE
Cloud forest trees drink water through their leaves

More bang for bugs

If you cut down a tree in the forest, can wildlife hear it?

Warming climate unlikely to cause extinction of ancient Amazon trees




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement