Subscribe free to our newsletters via your
. Solar Energy News .




ROBO SPACE
Robots with lift
by Staff Writers
Boston MA (SPX) Feb 19, 2013


Just as with other soft robots, the three-legged jumping system begins life as a mold created by a 3-D printer. The robots are molded using soft silicone that allows them to stretch and flex.

They can already stand, walk, wriggle under obstacles, and change colors. Now researchers are adding a new skill to the soft robot arsenal: jumping.

Using small explosions produced by a mix of methane and oxygen, researchers at Harvard have designed a soft robot that can leap as much as a foot in the air.

That ability to jump could one day prove critical in allowing the robots to avoid obstacles during search and rescue operations. The research is described in the international edition of Angewandte Chemie.

"Initially, our soft robot systems used pneumatic pressure to actuate," said Robert Shepherd, first author of the paper, former postdoctoral researcher in the Whitesides Research Group at Harvard, and now an assistant professor at Cornell.

"While that system worked, it was rather slow - it took on the order of a second. Using combustion, however, allows us to actuate the robots very fast. We were able to measure the speed of the robot's jump at 4 meters per second."

Just as with other soft robots, the three-legged jumping system begins life as a mold created by a 3-D printer. The robots are molded using soft silicone that allows them to stretch and flex.

But where pneumatic robots are connected to tubing that pumps air, the jumping robots are connected to tubes that deliver a precisely controlled mix of methane and oxygen. Using high-voltage wires embedded in each leg of the robot, researchers deliver a spark to ignite the gases, causing a small explosion that sends the robot into the air.

Among the key design innovations that allowed the combustion system to work, Shepherd said, was the incorporation of a simple valve into each leg of the robot.

"We flow fuel and oxygen into the channels, and ignite it," Shepherd said.

"The heat expands the gas, causing the flap to close, pressurizing the channel and causing it to actuate. As the gas cools, the flap opens and we push the exhaust out by flowing more gas in. So we don't need to use complex valve systems, all because we chose to mold a soft flap into the robot from the beginning."

While the notion of using combustion to power a soft robot was enticing, it also came with a number of critical questions, not the least of which was whether the soft silicone used to create the robots would even survive.

"It's a lot more powerful, but the question we had to answer was whether it was compatible - were the temperatures compatible - with this system," Shepherd said.

"What we were able to show is, because the duration of the explosion is so short, the energies absorbed by the robot are small enough to be compatible with soft robots. What's more, the temperature of the robot increases by, on average, less than one kelvin."

While he hopes to see internal combustion systems developed that can allow robots to walk or even run, Shepherd said jumping made sense as a starting point.

"Because it releases so much energy so fast, it made sense for jumping to be the first 'gait' we explored with this system," he said. "The next step now is to learn how we can use this combustion system for other gaits, like running or even walking."

Watch a video of the jumping robots in action here

Other authors on the paper are Adam Stokes, Jacob Freake, Phillip Snyder, Aaron Mazzeo, Ludovico Cademartiri, Stephen A. Morin, George M. Whitesides, the Woodford L. and Ann A. Flowers University Professor at Harvard, and Jabulani Barber, an FAS research associate with the Whitesides Research Group.

.


Related Links
Harvard University
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ROBO SPACE
Humans and robots work better together following cross-training
Boston MA (SPX) Feb 14, 2013
Spending a day in someone else's shoes can help us to learn what makes them tick. Now the same approach is being used to develop a better understanding between humans and robots, to enable them to work together as a team. Robots are increasingly being used in the manufacturing industry to perform tasks that bring them into closer contact with humans. But while a great deal of work is being ... read more


ROBO SPACE
Herty Advanced Materials Opens First New Pellet Mill

California is the Top State in US for Advanced Biofuel Companies

Newly discovered plant structure may lead to improved biofuel processing

Hydrothermal liquefaction - the most promising path to a sustainable bio-oil production

ROBO SPACE
Robots with lift

Dry ice vacuum cleaner robot bound for Fukushima

Gas explosions enable soft robot to jump

Humans and robots work better together following cross-training

ROBO SPACE
New framework for wind energy assessments

Gone with the wind: French scheme targets farting cows

Mainstream Renewable Power Starts Building Wind Farm in Chile

Sabotage may have felled U.K. wind turbine

ROBO SPACE
Bridgestone reports soaring annual profit

Virtual vehicle vibrations

NYC looks at electric vehicle charging

Nissan profit tumbles on China, Europe woes

ROBO SPACE
Romgaz lands option for Black Sea field

Quantum Dot Harvester Turns Waste Heat Into Electricity At The Nanoscale

Fracking fluid spews from Colo. gas well

Greek PM hails TAP agreement

ROBO SPACE
Northeast China has nuclear power

Roof collapses at Chernobyl nuclear plant: Ukraine

Fukushima survivors to sue Japan government

Finland's TVO says reactor may be delayed until 2016

ROBO SPACE
Cities can reduce greenhouse gas emissions by 70 percent

Bulgarians protest high energy costs

Genscape Announces Strategic Partnership with Murex to Create Supply of QAP-A RINS

Diageo Transitions to 100 Percent Renewable Electricity at its North American HQ

ROBO SPACE
Wetland trees a significant overlooked source of methane

Lungs of the planet reveal their true sensitivity to global warming

Southwest regional warming likely cause of pinyon pine cone decline

Tree die-off triggered by hotter temperatures




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement