Solar Energy News  
TECH SPACE
Room-temperature multiferroic thin films and their properties
by Staff Writers
Tokyo, Japan (SPX) Jan 09, 2018


illustration only

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as magnetic (electric) field-controlled ferroelectric (ferromagnetic) properties and because they can be used in novel technological applications such as fast-writing, power-saving, and nondestructive data storage. However, because multiferroicity is typically observed at low temperatures, it is highly desirable to develop multiferroic materials that can be observed at room temperature.

GaxFe2-xO3, or GFO for short, is a promising room-temperature multiferroic material because of its large magnetization. GFO thin films have already been successfully fabricated, and their polarization switching at room temperature has been demonstrated. However, their ferroelectric and ferromagnetic properties must be controlled to realize better magnetoelectric properties and applications of GFO films. In order to control these properties, it is essential to understand the relationship between the constituent composition at each cation site and the original character.

Therefore, the research team led by Mitsuru Ito at Tokyo Tech set out to systematically investigate multiferroicity as a function of the compositional ratio of Ga and Fe in GFO films. Specifically, they studied the ferroelectric properties of the GFO films using piezoresponse force microscopy, and found that GaxFe2-xO3 films with x = 1 and 0.6 show ferroelectricity at room temperature.

The piezoresponse phase can be reversed by 180 when a voltage of more than 4.5 V is applied. This behavior is typical of ferroelectric materials and is a strong indicator of the presence of switchable polarization in the film at room temperature.

The scientists also confirmed room-temperature ferrimagnetism of the films through magnetic characterization. Lastly, they were able to demonstrate the room-temperature magnetocapacitance effects of the GFO films. They reported that by changing x, the coercive electric field, coercive force, and saturated magnetism values could be controlled.

They also showed that the ferroelectric and magnetic ranges of GFO-type iron oxides differ from those of the well-known room-temperature multiferroic BiFeO2 and may expand the variety of room-temperature multiferroic materials.

Research paper

TECH SPACE
Accelerated analysis of the stability of complex alloys
Bochum, Germany (SPX) Jan 03, 2018
Material scientists at Ruhr-Universitat Bochum are able to determine if a new material remains stable under temperature load within the space of a few days. They have developed a novel process for analysing, for example, the temperature and oxidation resistance of complex alloys that are made up of a number of different elements. Previously, such analyses used to take months. The team headed by ... read more

Related Links
Tokyo Institute of Technology
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Rice U.'s one-step catalyst turns nitrates into water and air

Less chewing the cud, more greening the fuel

Solid-state physics offers insights into dielectric properties of biomaterials

A new strategy for efficient hydrogen production

TECH SPACE
Artificial muscles power up with new gel-based robotics

Stingray soft robot could lead to bio-inspired robotics

New 'emotional' robots aim to read human feelings

Virtual aide market a "wildfire" at CES gadget show

TECH SPACE
The wave power farm off Mutriku could improve its efficiency

Turkey gets European loan for renewable energy

Oil-rich Alberta sees momentum for wind energy

Construction to start on $160 million Kennedy Energy Park in North Queensland

TECH SPACE
Gas-powered vehicle about twice as costly to drive as an electric

GM seeks US approval for car with no steering wheel

Toyota brings the store to you with self-driving concept vehicle

Bucking trend, Hyundai bets on hydrogen fuel cell for new car

TECH SPACE
Controlling superconductivity using spin currents

The atomic dynamics of rare everlasting electric fields

Surprising discovery could lead to better batteries

New, greener fuel cells move step closer to reality

TECH SPACE
Framatome nuclear fuel contract with CNNC

Framatome pursues the industrial and technological adventure of the nuclear energy business

Struggling Westinghouse Electric sold to Brookfield for $4.6 bn

Russia to build nuclear power plant in Sudan

TECH SPACE
U.S. utility regulator ponders grid reliability

US energy watchdog rejects plan to subsidize coal, nuclear sectors

U.S. blizzard to test gas, electric markets

'Virtual gold' may glitter, but mining it can be really dirty

TECH SPACE
Senegal forest massacre: what we know

Senegal in crackdown on timber trafficking after massacre

North Atlantic Oscillation dictates timing of tree reproduction in Europe

African deforestation not as great as feared









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.