Solar Energy News  
SOLAR DAILY
SUN-to-LIQUID produces solar kerosene from sunlight, water and carbon dioxide
by Staff Writers
Zurich, Switzerland (SPX) Jun 18, 2019

At the Sun-to-LIQUID solar plant in Mosteles near Madrid, scientists succeeded in producing kerosene from the raw materials water, carbon dioxide and concentrated sunlight under real conditions for the first time. The image shows the mirror field and solar tower with the solar-thermochemical reactor in which synthesis gas is produced - a mixture of hydrogen and carbon monoxide. In a second step, a connected Fischer-Tropsch plant converts the synthesis gas into liquid kerosene.

The transition from fossil to renewable fuels is one of the most important challenges of the future. The SUN-to-LIQUID project takes on this challenge by producing renewable transportation fuels from water and carbon dioxide with concentrated sunlight: The project, which is funded by the EU and Switzerland, has now successfully demonstrated the first synthesis of solar kerosene.

"The SUN-to-LIQUID core solar technology and the integrated chemical plant were experimentally validated under real field conditions relevant to industrial implementation," said Aldo Steinfeld of ETH Zurich, who leads the development of the solar thermochemical reactor.

"This technological demonstration can have important implications for the transportation sectors, especially for the long-haul aviation and shipping sectors strongly dependent on drop-in hydrocarbon fuels," announced project coordinator Andreas Sizmann of Bauhaus Luftfahrt, "we are now a step closer to living on a renewable 'energy income' instead of burning our fossil 'energy heritage'. This is a necessary step to protect our environment."

From the laboratory to the field
The preceding EU-project SOLAR-JET developed the technology and achieved the first-ever production of solar jet fuel in a laboratory environment. The SUN-to-LIQUID project scaled up this technology for on-sun testing at a solar tower. For that purpose, a unique solar concentrating plant was built at the IMDEA Energy Institute in Mostoles, Spain. "A sun-tracking field of heliostats concentrates sunlight by a factor of 2500 - three times greater than current solar tower plants used for electricity generation," explains Manuel Romero of IMDEA Energy.

This intense solar flux, verified by the flux measurement system developed by the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) makes it possible to reach reaction temperatures of more than 1500 degrees Celsius within the solar reactor positioned at the top of the tower.

The solar reactor, developed by project partner ETH Zurich, produces synthesis gas, a mixture of hydrogen and carbon monoxide, from water and carbon dioxide via a thermochemical redox cycle. An on-site gas-to-liquid plant that was developed by the project partner HyGear processes this gas to kerosene.

DLR has many years of experience in the development of solar-thermal chemical processes and their components. In the SUN-to-LIQUID project, DLR was responsible for measuring the solar field and concentrated solar radiation, for developing concepts for optimised heat recovery and - as in the previous SOLAR-JET project - for computer simulations of the reactor and the entire plant.

Researchers from the DLR Institute of Solar Research and the DLR Institute of Combustion Technology used virtual models to scale up the solar production of kerosene from the laboratory to a megawatt-scale plant and to optimise the design and operation of the plant.

For SUN-to-LIQUID, DLR solar researchers developed a flux density measurement system that makes it possible to measure the intensity of highly concentrated solar radiation directly in front of the reactor with minimal interruption of its operation. This data is necessary to operate the plant safely and to determine the efficiency of the reactor.

Unlimited supply of sustainable fuel
Compared to conventional fossil-derived jet fuel, the net carbon dioxide emissions to the atmosphere can be reduced by more than 90 percent. Furthermore, since the solar energy-driven process relies on abundant feedstock and does not compete with food production, it can thus meet the future fuel demand at a global scale without the need to replace the existing worldwide infrastructure for fuel distribution, storage, and utilisation.

Project background
SUN-to-LIQUID is a four-year project supported by the European Union's Horizon 2020 research and innovation programme and the Swiss State Secretariat for Education, Research and Innovation (SERI). It began in January 2016 and will end on 31 December 2019.

SUN-to-LIQUID joins leading European research organisations and companies in the field of solar thermochemical fuel research, namely ETH Zurich, IMDEA Energy, DLR, Abengoa Energia and HyGear Technology and Services B.V. The coordinator Bauhaus Luftfahrt e.V. is also responsible for technology and system analyses. ARTTIC supports the Research Consortium with project management and communication.


Related Links
SUN-to-LIQUID
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
The new technology will significantly enhance energy harvest from PV modules
Tallinn, Estonia (SPX) Jun 17, 2019
The whole world is inevitably moving towards a more sustainable lifestyle. Sustainability of the environment requires changes in the current way of life and introduction of new, more sustainable solutions in our everyday consumption. The TalTech Power Electronics Research Group led by Researcher-Professor Dmitri Vinnikov has been working on improvement of the efficiency of alternative energy generation units for over decade. "In the early years of the alternative energy deployment, it was outrageo ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
New core-shell catalyst for ethanol fuel cells

NREL researchers to help ExxonMobil reduce future biofuels emissions

Researchers take two steps toward green fuel

New microorganism for algae biomass to produce alternative fuels

SOLAR DAILY
I, Chatbot: Getting your news from a talkative automaton

Investing in Tech Concepts Aimed at Exploring Lunar Craters, Mining Asteroids

Army project develops agile scouting robots

Better together: human and robot co-workers

SOLAR DAILY
Can sound protect eagles from wind turbine collisions?

UK hits historic coal-free landmark

BayWa r.e. sells its first Australian wind farms to Epic Energy

The complicated future of offshore wind power in the US

SOLAR DAILY
Fiat Chrysler taps Aurora for self-driving commercial vehicles

BMW partners Jaguar Land Rover to develop electric engine

Uber names Melbourne as first non-US city for flying car program

Somebody's watching you: The surveillance of self-driving cars

SOLAR DAILY
Researchers introduce novel heat transport theory in quest for efficient thermoelectrics

AI and high-performance computing extend evolution to superconductors

Scientists found a way to increase the capacity of energy sources for portable electronics

Flexible generators turn movement into energy

SOLAR DAILY
Framatome receives DoE GAIN voucher to support development of Lightbridge Fuel

GE Hitachi begins vendor review of its BWRX-300 SMR with Canada's nuclear commission

World's second EPR nuclear reactor starts work in China

Bio-inspired material targets oceans' uranium stores for sustainable nuclear energy

SOLAR DAILY
Wartsila and Summit sign Bangladesh's biggest ever service agreement to maintain Summit's 464 MW power plants

Canada must double its carbon tax to reach emissions target

New York takes aim at skyscrapers' sky-high energy usage

Florida air conditioning pioneer first dismissed as a crank

SOLAR DAILY
Big brands breaking pledge to not destroy forests: report

Some older forests better suited to change with the climate

Sri Lanka to ban chainsaws, timber mills: president

A forest 'glow' reveals awakening from hibernation









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.