![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]()
Amsterdam, Holland (SPX) Jul 13, 2007 Dutch researcher Joris van den Berg has developed a mathematical model to predict the movement of sand waves. Sand waves are formed by an interaction between the tidal current and sand. They are larger than sand ripples on the beach but smaller than sandbanks. Sand waves largely determine the shape of the sea floor in the southern part of the North Sea. A good predictive computer model would be a valuable tool for shipping and designers of offshore infrastructures. The mathematical equations describing the behaviour of sand waves have been known for some time. Yet suitable equations alone are not enough to predict their behaviour; the equations also need to be solved reliably. To date, no practical methods were available for solving these equations, especially for larger sand waves. First of all, Van den Berg simplified the equations considerably. This made it much easier to find solutions and hence to predict sand wave behaviour. The result was a tool that could quickly predict the effect of interventions such as dredging. This model was used successfully to determine the recovery of sand waves after dredging of a trench for the new high-voltage cable from the Netherlands to England. Subsequently, Van den Berg developed efficient calculation methods to solve the original equations. In the end this resulted in a mathematical model that will possibly enable studies on the interaction between sand waves and sand banks in the future. Predicting the growth and movement of these waves is vitally important for the safety of shipping and the design of offshore infrastructure, such as pipelines, cables and platforms. Sand waves develop in loose sand on the bottom of shallow seas. This loose sand is transported by tidal currents, giving rise to wave patterns. These patterns disrupt the tidal flow and result in more sand being pushed on to the slope. Eventually, sand waves can reach a height of five to eight metres and due to the current they can continuously move and change shape. Related Links Water News - Science, Technology and Politics
![]() ![]() Japan has begun planting baby coral on a remote Pacific atoll in a multi-million-dollar project to save sinking islets and defend a territorial claim disputed with China, officials said Monday. Japan regards the rocky isles of Okinotori, 1,700 kilometres (1,060 miles) south of Tokyo, as the southernmost point of its territory, letting it set its 200-nautical-mile exclusive economic zone around them. |
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement |