Solar Energy News  
BIO FUEL
Scientists clarify light harvesting in green algae
by Staff Writers
Beijing, China (SPX) Nov 27, 2019

Structures of C2S2M2L2 and C2S2 -type PSII-LHCII supercomplex from a green algae

Algae are indispensable because they generate about 50% of primary organic matter and account for about 50% of all oxygen on Earth. They produce oxygen through oxygenic photosynthesis -a biological process that "harvests" light and turns it into chemical energy.

A new study by Chinese and Japanese researchers has now characterized the light-harvesting system of Chlamydomonas reinhardtii, a common unicellular green alga. This research enhances understanding of the molecular basis for efficient light harvesting as well as photoprotection in green algae under variable light conditions.

The study was conducted by Dr. LIU Zhenfeng's group from the Institute of Biophysics (IBP) of the Chinese Academy of Sciences and Dr. Jun Minagawa from Japan's National Institute for Basic Biology. Results were published online in Nature Plants on Nov. 25, 2019 in an article entitled "Structural insights into light harvesting for photosystem II in green algae."

Oxygenic photosynthesis in algae and plants relies on photosystem II (PSII) molecules and light-harvesting complex II (LHCII) molecules, and their associated supercomplexes, to convert light energy into chemical energy. For example, PSII catalyzes the splitting of water molecules into oxygen and protons. PSII also assembles with LHCII at the peripheral region to absorb photon energy efficiently.

C. reinhardtii has been an important model for photosynthesis research over the past few decades as well as a platform for the production of high-value products such as biofuel and pharmaceutical compounds. Its LHCII molecules join with PSII molecules to form the C2S2M2L2 supercomplex - the largest known algae or plant PSII-LHCII supercomplex, in addition to the smaller C2S2-type supercomplex.

The researchers solved the structures of both C2S2M2L2 and C2S2 by using cryo-electron microscopy (cryo-EM). They also deciphered in great detail the assembly mechanisms and energy transfer pathways of the two supercomplexes.

Their research shows that the LHCII trimer strongly associated with the PSII core (C) contains three distinct subunits, namely, LhcbM1, LhcbM2 and LhcbM3. Two special lipid molecules mediate the interactions between LhcbM1 and the PSII core antenna CP43.

Furthermore, they discovered that one pair of moderately associated LHCII trimers (M-LHCII) and an additional pair of loosely associated LHCII trimers (L-LHCII) attach at the peripheral region of the C2S2 supercomplex, leading to the formation of the C2S2M2L2 > supercomplex.

By analyzing the structure of C2S2M2L2 supercomplex, the scientists found that the minor antenna complexes CP29 and CP26 contain several green algae-specific regions that are absent in homologs from land plants. They discovered that these special regions on CP29 play a crucial role in linking L-LHCII and M-LHCII and stabilizing the resulting assembly, whereas those of CP26 strengthen its own interactions with S-LHCII (LHCII strongly-associated with PSII).

In addition, using quantitative analysis of chlorophyll-chlorophyll relationships, the team unraveled multiple energy transfer routes from L-LHCII, M-LHCII and S-LHCII to PSII, thus explaining the fundamental steps of the light-harvesting process in green algae.

Research paper


Related Links
Chinese Academy of Sciences Headquarters
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Researchers design an improved pathway to carbon-neutral plastics
Toronto, Canada (SPX) Nov 21, 2019
Researchers from U of T Engineering and Caltech have designed a new and improved system for efficiently converting CO2, water, and renewable energy into ethylene - the precursor to a wide range of plastic products, from medical devices to synthetic fabrics - under neutral conditions. The device has the potential to offer a carbon-neutral pathway to a commonly used chemical while enhancing storage of waste carbon and excess renewable energy. "CO2 has low economic value, which reduces the incentive ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Researchers design an improved pathway to carbon-neutral plastics

France reverse palm oil tax break after outcry

France's Total faces outcry after winning back palm oil tax break

Scientists create 'artificial leaf' that turns carbon into fuel

BIO FUEL
NASA takes a cue from Silicon Valley to hatch artificial intelligence technologies

Google Assistant to be 'news host' on devices

Scientists help soldiers figure out what robots know

Army researcher promotes cooperation between humans, autonomous machines

BIO FUEL
DTEK reaches 1 GW of renewable energy generation capacity in Ukraine

Global winds reverse decades of slowing and pick up speed

Superconducting wind turbine chalks up first test success

Breaking down controls to better control wind energy systems

BIO FUEL
Uber may contribute more transport pollution than solution: study

US probe faults Uber, human error in self-driving car crash

Uber to test letting riders record trip chats

Uber safety culture lacking in autonomous car incident: regulator

BIO FUEL
Researchers visualize bacteria motor in first step toward human-produced electrical energy

HKU team invents Direct Thermal Charging Cell for converting waste heat to electricity

PPPL scientist confirms way to launch current in fusion plasmas

New material breaks world record turning heat into electricity

BIO FUEL
Nuclear fuel alternatives after Fukushima have challenges ahead

Framatome implements new maintenance technique on reactor component underwater

Czechs plan to build new nuclear unit by 2036

France's EDF cuts nuclear output forecast after quake

BIO FUEL
Renewables could cut power generation health impact by 80 percent

How much energy do we really need

Modeling Every Building in America Starts with Chattanooga

EU bank to stop funding fossil fuels in 'landmark decision'

BIO FUEL
Drogba kicks off 'million trees' project in Ivory Coast

Deforestation in Brazil's Amazon highest since 2008: official

Paying countries not to chop down forests works, study shows

Romania's forests under mounting threat -- along with rangers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.