Solar Energy News  
TIME AND SPACE
Scientists develop exceptional surface to explore exotic physics
by Staff Writers
University Park PA (SPX) Feb 04, 2022

The chiral system behaves differently depending on which direction light enters. When light enters clockwise (right), some is absorbed, the rest continues to the mirror. It reflects toward its original direction, reentering the resonator, coupling over the clockwise input, and creating the ripple-like field distribution called a standing wave pattern. The absorption lineshape then appears as squared Lorentzian (flat top). When light enters the resonator counterclockwise (left), some light is absorbed, but most exits the system. Since it does not reenter the resonator, only counterclockwise light propagates, resulting in a traveling wave. The measured absorption exhibits a Lorentzian lineshape.

By demonstrating exceptional control of an open optical system, an international research team has provided a path to experimentally measure and test exotic phenomena and gain insights into new physics with exquisite sensitivity.

Reported in Nature Communications, the Penn State, Michigan Technological University and Vienna University of Technology researchers created a stable surface of 'exceptional' points - notoriously finicky singularities that exhibit peculiar properties - and used it to facilitate and observe the perfect absorption of light in a coherent, chiral system.

When light enters the system, which operates as a surface full of exceptional points, in one direction, the light is completely absorbed. When entering from the opposite direction, relatively little light is absorbed.

"Our work points the way towards interesting new physics with exceptional points beyond their traditional habitat in sensing and lasing, where many more insights can be expected," said corresponding author Sahin Ozdemir, associate professor of engineering science and mechanics at Penn State.

Harnessing the unique properties of exceptional surfaces, Ozdemir explained, could elucidate to a deeper understanding of what happens when physical processes occur exactly at an exceptional point, leading to potential applications for better sensors and novel ways of controlling the interaction of light with matter.

Open systems constantly move energy in and out, shifting their parameters and how they react to moving variables in their surrounding environment. In this dance of change, the value of any spectral point in the system can coalesce with the value of another spectral point, drawing them together as a spectral singularity - an exceptional point.

Incredibly sensitive, exceptional points respond to any interference with strong, measurable signals. Even the smallest of perturbations can knock the exceptional point enough for it to dissociate and become unexceptional, according to Ozdemir.

"The downside of this fragility is that it becomes very difficult to operate a system at an exceptional point without being driven away from the singularity, which poses a serious challenge for exploiting exceptional points for practical applications," Ozdemir said, explaining that moving close to an exceptional point introduces noise to the system.

"You can bring your system close to these points in a huge space, but you may fail to stabilize the system long enough to study precisely at those exceptional points. So, what if every point in that space was exceptional?"

Following their earlier theoretical proposals, published in Physical Review Letters and Optics Letters, the researchers placed a mirror at one end of a waveguide, a structure that encourages light waves to follow a particular path. The waveguide was outfitted with a microresonator, which supports light propagation in clockwise and counterclockwise directions at the same frequency.

The researchers coupled light to the resonator, bringing its frequency to that of the exceptional point and sent it into the system - either in a clockwise or counterclockwise direction. Clockwise light traveled along a tapered fiber guide until it encountered the mirror and was reflected in the direction from where it came. Counterclockwise light did not encounter the mirror, so it traveled the system once before dispersing. Detectors on either end tracked light that escaped the system.

"Theoretically, light absorbed at an exceptional point or on an exceptional surface will measure with a flat top resonance lineshape," Ozdemir said.

The lineshape refers to the shape of the measured spectrum. Light sent clockwise first entered the resonator at the exceptional point frequency and was partially absorbed, with the rest continuing to the mirror. The reflected light traveled back through the resonator, perfectly overlapping with the resonance and absorbing completely.

The measured spectra revealed a squared Lorentzian lineshape - the formerly theoretical flat top. Light sent in a counterclockwise direction only went through the resonator once, since it was not reflected. The measured results demonstrate the system's chirality, or how different directional inputs cause different behavior.

"We saw chiral perfect absorption in an exceptional surface in an open system," said first author Sina Soleymani, postdoctoral researcher in engineering science and mechanics. Soleymani completed his doctoral research on this project prior to graduating from Penn State in 2021. "The mirror allows the exceptional surface to form because it couples the modes to one another in a chiral manner."

Without the mirror, the system behaves exactly the same when light is sent clockwise or counterclockwise. The mirror makes the system chiral: a portion of the light sent clockwise couples to counterclockwise direction after it is reflected by the mirror, but light sent in the counterclockwise does not couple to the clockwise direction.

"It's so stable and simple," Solyemani said. "Just a mirror in one end of the waveguide gives us the beautiful surface to more easily investigate both the classical and quantum dynamics at exceptional points."

Ozdemir is also affiliated with the Penn State Materials Research Institute. Other contributors include Mohammad Mokim in Penn State's Department of Engineering Science and Mechanics; Q. Zhong and R. El-Ganainy, Michigan Technological University's Department of Physics and Henes Center for Quantum Phenomena; and S. Rotter, Vienna University of Technology's Institute for Theoretical Physics.

Research Report: "ARTICLEChiral and degenerate perfect absorptionon exceptional surfaces"


Related Links
Penn State College of Engineering
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Researchers set record by preserving quantum states for more than 5 seconds
Lemont IL (SPX) Feb 04, 2022
Breakthrough using common material could pave way for new quantum technologies. Quantum science holds promise for many technological applications, such as building hackerproof communication networks or quantum computers that could accelerate new drug discovery. These applications require a quantum version of a computer bit, known as a qubit, that stores quantum information. But researchers are still grappling with how to easily read the information held in these qubits and struggle with the short ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
The path to renewable fuel just got easier

Reducing methane emissions at landfills

LSU chemists unlock the key to improving biofuel and biomaterial production

Getting hydrogen out of banana peels

TIME AND SPACE
Northrop Grumman to Develop Prototype Artificial Intelligence Assistant

People prefer interacting with female robots in hotels

Former NASA official starts company to put robotic spacecraft in orbit

Kirigami robotic grippers are delicate enough to lift egg yolks

TIME AND SPACE
Jet stream models help inform US offshore wind development

Wind powers change in England's industrial heartland

Owl wing design reduces aircraft, wind turbine noise pollution

Earth, wind and reindeer: Lapland herders see red over turbines

TIME AND SPACE
Hybrid car sales catch up to diesel in Europe

Paris gives 6-month delay for new crackdown on polluting cars

Tesla reports record profit, sees more supply chain woes in 2022

Bentley says first luxury electric car due 2025

TIME AND SPACE
Superconductivity on the edge

High-strength and high energy storage capacity

Power at sea: towards high-performance seawater batteries

Portugal wants to hunt for lithium deposits

TIME AND SPACE
France's nuclear ambitions take shape with turbine deal

Atlanta to host key SMR and Advanced Reactor event in May

Finland nuclear reactor runs into new delay

Brussels weathers backlash over calling gas and nuclear sustainable

TIME AND SPACE
US household air conditioning use could exceed electric capacity in next decade due to climate change

Risk appetite of banks for small merchant renewable energy plants remains low

EU ministers mull climate policy, carbon border tax

EU nations quarrel over whether nuclear, gas are 'green'

TIME AND SPACE
Drones help solve tropical tree mortality mysteries

Kenya under fire over calls to 'weaken' forest protections

Firefighters extinguish Kenya forest blaze

Deforestation in Brazilian Amazon hits January record









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.