![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers New Brunswick NJ (SPX) Aug 15, 2019
Scientists have discovered how diatoms - a type of alga that produce 20 percent of the Earth's oxygen - harness solar energy for photosynthesis. The Rutgers University-led discovery, published in the journal Proceedings of the National Academy of Sciences, could help lead to more efficient and affordable algae-based biofuels and combat climate change from fossil fuel burning. Oceans and other waterways are rich with algae - energy factories that convert sunlight and carbon dioxide into chemical energy and help remove carbon from the atmosphere. Diatoms are among the most successful species of algae. Their fossil oils are the source of the highest quality petroleum on Earth. The Rutgers-led team used a 3D bioimaging tool to reveal for the first time the architecture of the proteins known as Photosystem II that diatoms use to absorb sunlight and power their photosynthesis. They found that each cell includes two sets of these proteins, though only one set is active. The active set has a structure associated with pigment proteins, such as green chlorophyll that absorbs light, in an antenna to harvest light for photosynthesis. The inactive set lacks the antenna and does not participate in photosynthesis. The Rutgers-led team is seeking to understand the limits of the power of photosynthesis in algae and to harnessing that power to produce biofuels. Algae store energy in the form of natural oils and, under the right conditions, can make a lot of oil that can be converted into biofuels for cars, trucks, trains and planes, according to the U.S. Department of Energy. "The next steps are to try to understand the mechanisms that control the dynamics between the proteins and support robust biochemical energy production," said senior author Wei Dai, an assistant professor in the Department of Cell Biology and Neuroscience in the School of Arts and Sciences. "That would lay the groundwork for further research into developing more cost-effective biofuels from algae and displace petroleum," said co-author Paul G. Falkowski, a Distinguished Professor who leads the Environmental Biophysics and Molecular Ecology Laboratory in the School of Environmental and Biological Sciences. Scientists at Rutgers, Baylor College of Medicine in Texas and Xiangya Hospital at Central South University in China contributed to the study.
![]() ![]() Clearing up the 'dark side' of artificial leaves Chicago IL (SPX) Aug 05, 2019 While artificial leaves hold promise as a way to take carbon dioxide - a potent greenhouse gas - out of the atmosphere, there is a "dark side to artificial leaves that has gone overlooked for more than a decade," according to Meenesh Singh, assistant professor of chemical engineering in the University of Illinois at Chicago College of Engineering. Artificial leaves work by converting carbon dioxide to fuel and water to oxygen using energy from the sun. The two processes take place separately and s ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |