Solar Energy News  
EARLY EARTH
Scientists find 'birthmarks' from Earth's infancy
by Staff Writers
College Park MD (SPX) May 13, 2016


Baffin Bay in the North Atlantic.

University of Maryland Professor of Geology Richard Walker and fellow scientists in a multi-institution research team have found two 'birthmarks' within Earth's mantle (the rocky middle layer between Earth's metallic core and outer crust), consisting of silicate material formed when our planet was less than 50 million years old.

The team of researchers from the University of Quebec at Montreal, the University of Maryland, the Carnegie Institution for Science, the University of California-Davis, McGill University and the University of California-Santa Barbara found clear signatures of this distinctive material in two widely separated locations on the globe, Baffin Bay in the North Atlantic and Ontong Java Plateau in the western Pacific Ocean. Their work appears in the May 13 issue of the journal Science.

According to Walker, chair of UMD's Department of Geology, this is the first clear indication that portions of the mantle formed during Earth's primary accretion period still exist today. "What we've found are surviving parts of Earth's primitive mantle that have been preserved for four and a half billion years, and I think that's kind of exciting!"

Scientists believe Earth grew to its current size through the accretion of material from collisions with bodies of increasing size over several tens of millions of years early in the history of the solar system. The last and most massive of these impacts was a collision between the proto-Earth and a planetoid approximately the size of Mars that resulted in the formation of our moon.

Scientific consensus long had held it unlikely that any vestiges of rock from the earliest-period of Earth history survived. It was thought that the physical mixing and internal heat caused by the many collisions with other solar system bodies would have homogenized all material from Earth's early mantle. However, that view began to change with findings in 2012 by Walker and colleagues that indicated some material from the primitive mantle continued to exist until at least 2.8 billion years ago.

In the current paper, the authors note that: "Four and a half billion years of geologic activity have overprinted much of the evidence for the processes involved in Earth's formation and initial chemical differentiation."

However, they write that high-precision measurements of the ratios of different forms (or isotopes) of specific elements can "provide a view of events that occurred during the first few tens of million years of Earth history, using short-lived radionuclides [unstable forms of chemical elements that radioactively decay] that were present when Earth formed."

According to Walker, the team's identification of primitive mantle material was based on detection of an overabundance of an isotope of tungsten. The radioactive element hafnium, decays into the tungsten.

182-hafnium is a form or isotope of the element that was present when our solar system formed, but is no longer present on Earth today. The decay of 182-hafnium into 182-tungsten is so rapid that variations in the abundance of 182-tungsten relative to other isotopes of tungsten can only be due to processes that occurred very early in the history of our solar system.

Research paper: "Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts," Hanika Rizo et al., 2016 May 13, Science


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Maryland
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
Early Earth's air weighed less than half of today's atmosphere
Seattle WA (SPX) May 11, 2016
The idea that the young Earth had a thicker atmosphere turns out to be wrong. New research from the University of Washington uses bubbles trapped in 2.7 billion-year-old rocks to show that air at that time exerted at most half the pressure of today's atmosphere. The results, published online May 9 in Nature Geoscience, reverse the commonly accepted idea that the early Earth had a thicker a ... read more


EARLY EARTH
Berkeley Lab scientists brew jet fuel in 1-pot recipe

UNT researchers discover potential new paths for plant-based bioproducts

Improving utilization of ammonia and carbon dioxide in microalgal cultivation

Airbus Defence and Space signs contract to build Biomass

EARLY EARTH
Bee model will help development of aerial robotics

This 5-fingered robot hand learns to get a grip on its own

Rover technology for space now being used on Earth

Robot built to aid astronauts nearly ready for Mars

EARLY EARTH
DNV GL-led project gives green light for wind-powered oil recovery

Report: U.S. wind energy sector booming

El Hierro, the Spanish island vying for 100% clean energy

USGS finds cranes isolated from wind farms

EARLY EARTH
France's Peugeot and Chinese partner to develop electric cars

Strolling and selfies as Paris' Champs-Elysees goes car-free

Self-driving cars in a fast lane: Fiat Chrysler chief

Volvo Cars gets junk rating as bond offer hits the road

EARLY EARTH
Speedy ion conduction clears road for advanced energy devices

Researchers integrate diamond/boron layers for high-power devices

Clues on the path to a new lithium battery technology

Anomalous sinking of spheres in apparently fixed powder beds discovered

EARLY EARTH
Ancient glass-glued walls studied for nuke waste solutions

India's Mainland to Host Next Hub of Nuclear Plants

German power giants to pay into public fund to finance nuclear phase-out

BWXT tapped for nuclear reactor components, fuel

EARLY EARTH
Changing the world, 1 fridge at a time

Could off-grid electricity systems accelerate energy access

EU court overturns carbon market free quotas

Global leaders agree to set price on carbon pollution

EARLY EARTH
US must step-up forest pest prevention

Californian sudden oak death epidemic 'unstoppable'

Amazon rainforest responds quickly to extreme climate events

Old-growth forests may provide buffer against rising temperatures









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.