Solar Energy News  
TECH SPACE
Scientists identify unique binding mechanism of antifreeze molecule
by Staff Writers
Nagano, Japan (SPX) Apr 20, 2018

illustration only

Scientists have identified a unique molecular binding mechanism that helps keep non-mammalian creatures in sub-zero temperatures from freezing. Antifreeze glycoproteins (AFGPs), produced by polar fishes, inhibit ice growth to prevent their bodies from freezing. This ice binding mechanism, which scientists knew was soft and flexible, remained a mystery until now. Using molecular simulations, scientists identified the details of this binding mechanism.

Their results were published in early April in the Journal of the American Chemical Society as a cover article.

"On the Earth, there are extremely severe environments, [including] the polar region," said Kenji Mochizuki, an assistant professor at the Institute for Fiber Engineering at Shinshu University in Japan and first author on the paper. "Most organisms cannot survive there, but some have adapted to these conditions by using the clever strategy of the inhibition of ice growth by antifreeze glycoproteins."

Polar fish, for example, exist in water that is about two degrees below freezing. They produce AFGPs - with sugars attached - that stops the natural inclination of smaller ice crystals to bind into larger ice crystals.

The problem with imaging these AFGPS and their attached sugars is that they do not have a specific three-dimensional shape, unlike other antifreeze proteins (AFPs). Without rigidity, it's difficult to image the protein to elucidate its structure and function.

Prior to the study by Mochizuki and his team, scientists didn't understand how the antifreeze glycoprotein interacted with the ice or how it differed from regular antifreeze proteins.

"Antifreeze proteins are rigid molecules and have well-defined three-dimensional structures," Mochizuki said. "On the other hand, antifreeze glycoproteins are soft and flexible molecules, so they cannot be crystallized."

Flexible molecules tend not to bind well to ice, but scientists already knew antifreeze glycoproteins actually inhibited ice recrystallization better than typical antifreeze proteins, although they didn't know why, according to Mochizuki.

In collaboration with the department of chemistry at the University of Utah, Mochizuki used molecular simulations to model antifreeze glycoproteins and examined how they interacted with the ice.

"We thought that the flexible feature of antifreeze glycoproteins might yield a unique binding manner," Mochizuki said. "We found that antifreeze glycoproteins show various binding conformations... and walk on ice surfaces until they come across a step of ice."

Mochizuki examined AFGP8, the shortest protein in the AFGP family. Mochizuki found that AFGP8 is segregated to hydrophilic and hydrophobic groups, the latter of which adsorbs to the ice surface - meaning it stays as thin film over the ice.

The adsorption of AFGP8 to the flat surface of ice weak, though, so AFGP8 moves across the ice surface until it selectively binds to the growth points of ice. Mochizuki dubbed this movement "walking."

"Their motion of wandering on [the] ice surface and finding a step is significantly different from the binding behavior of antifreeze proteins," Mochizuki said.

The finding has potential future applications for better preserving food and biological tissue under extreme temperatures. Mochizuki will continue to study AFPs and AFGPs to elucidate their mechanisms more precisely and hopefully design artificial proteins or polymers which exhibit stronger antifreeze activities.

Research paper


Related Links
Shinshu University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Spider silk key to new bone-fixing composite
Storrs CT (SPX) Apr 20, 2018
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials. Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process. To facilitate repair, doctors may install a metal plate to support the bone as it fuses and heals. Yet that can be problematic. Some metals leach ions into surrounding tissue, cau ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
New catalyst turns ammonia into an innovative clean fuel

Carbon capture could be a financial opportunity for US biofuels

Wood formation model to fuel progress in bioenergy, paper, new applications

Research shows how genetics can contribute for advances in 2G ethanol production

TECH SPACE
NASA's swarmathon improves student skills in robotics, computer science

Interview with a robot: AI revolution hits human resources

Transparent eel-like soft robot can swim silently underwater

For heavy lifting, use exoskeletons with caution

TECH SPACE
US renewables firm takes Poland to court over U-turn on windmills

New control strategy helps reap maximum power from wind farms

Alberta proposes more renewable energy incentives

Transformer station for giant German wind farm positioned

TECH SPACE
Head of Tesla Autopilot project leaves for Intel

China's electric carmakers bloom at Beijing auto show

Can fish school cars in how to drive together?

Global carmakers show off SUVs, electrics as China pledges reforms

TECH SPACE
Nanowires could make lithium ion batteries safer

New materials for sustainable, low-cost batteries

New testing of model improves confidence in the performance of ITER

Some superconductors can also carry currents of 'spin'

TECH SPACE
Balancing nuclear and renewable energy

Framatome and Vattenfall sign contracts for the delivery of fuel assembly reloads

Framatome receives two patent awards for nuclear innovations

Quake hits near Iran nuclear power plant

TECH SPACE
Carbon taxes can be both fair and effective, study shows

Trump rolls back Obama-era fuel efficiency rules

Lights out for world landmarks in nod to nature

Puerto Rico power grid snaps, nearly 1 million in the dark

TECH SPACE
Tribal protesters march on Brazil congress over land threats

Billions of gallons of water saved by thinning forests

Warming climate could speed forest regrowth in eastern US

Warming climate could speed forest regrowth in eastern US









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.