Subscribe free to our newsletters via your
. Solar Energy News .




SOLAR DAILY
Scientists move closer to '2 for 1 deal' on solar cell efficiency
by Staff Writers
Cambridge, UK (SPX) Mar 17, 2015


While conventional solar cells use silicon, it is possible that other materials could eventually be used that would increase their efficiency.

The underlying mechanism behind an enigmatic process called "singlet exciton fission", which could enable the development of significantly more powerful solar cells, has been identified by scientists in a new study.

The process is only known to happen in certain materials, and occurs when they absorb light. As the light particles come into contact with electrons within the material, the electrons are excited by the light, and the resulting "excited state" splits into two.

If singlet exciton fission can be controlled and incorporated into solar cells, it has the potential to double the amount of electrical current produced from highly energetic blue and green light, capturing a great deal of energy that would normally be wasted as heat and significantly enhancing the efficiency of solar cells as a source of green energy.

Until now, however, scientists have not really understood what causes the process, and this has limited their ability to integrate it into solar devices.

Writing in the journal Nature Physics, a team of researchers shows that there is an unexpected link between the splitting process and the vibration of the molecule that occurs when light comes into contact with the electrons. This vibration is thought to drive the production of two excited electrons, revealing for the first time how singlet exciton fission happens.

The study was carried out by researchers from the Cavendish Laboratory at the University of Cambridge, and the University of Oxford. As well as solving a hitherto mysterious problem of quantum physics, it potentially provides a basis on which new singlet fission materials could be developed for use in solar cells.

Dr Andrew Musser, a post-doctoral research associate and former PhD student at St John's College, University of Cambridge, who co-authored the research paper, said: "We tend to characterise singlet exciton fission as a sort of two for the price of one deal on electrons, because you get twice as much electrical current. The problem is that if we want to implement this in a solar cell, the material needs to be engineered so that it is compatible with all the other components in the device. That means that we need to design a range of materials that could be used, and to do that, we need to understand more about why and how singlet exciton fission occurs in the first place."

At its most basic, singlet exciton fission is a product of the fact that when light particles, or photons, come into contact with an electron, the electron is excited by the light and moves. In doing so, it leaves a "hole" in the material's electronic structure. The electron and the hole are still connected, however, by a state of mutual attraction, and the two together are referred to by physicists as an "exciton".

These excitons come in two very different flavours: spin-singlet and spin-triplet, and in rare circumstances, they can convert from one to the other.

In the natural world, spin-singlet excitons are a part of photosynthesis in plants, because the light absorbed by pigments in the plant generates excitons which then carry energy throughout it. Solar cells imitate this process to generate and drive an electrical current. Conventional solar cells are silicon-based, and the absorption of a single photon leads to the formation of a single, excited electron that can be harvested as electrical current.

In a handful of materials, however, singlet exciton fission occurs instead. Rather than producing just one spin-singlet exciton, two spin-triplets appear when a photon is absorbed. This offers the tantalising prospect of a 100% increase in the amount of electrical current generated.

Researchers attempting to solve the puzzle of why the process happens at all, and why only in certain materials, have typically looked at how the electrons behave when they absorb light. In the new study, however, the team instead focused on the fact when the electrons move in response to the light, the molecule of which they are a part vibrates.

The team used thin samples of TIPS-pentacene, a semiconducting material in which singlet exciton fission is known to occur. They then fired ultra-fast pulses of laser light at the samples, each pulse lasting just 10 "femtoseconds", or 10 quadrillionths of a second.

The miniscule timescale was necessary so that large numbers of molecules could be vibrated synchronously, enabling the researchers to measure the response of the molecule and the resulting effect on the electrons as light hit the material. The measurements themselves were made using ultra-fast vibronic spectroscopy.

To the researchers' surprise, they found that the molecules in the pentacene samples not only vibrated as singlet exciton fission occurred, but also continued to do so afterwards. This implies that the formation of two spin-triplet excitons is stimulated by the vibrations themselves, and the resulting tiny, fast changes in the shape of the molecules.

"We are fairly confident that this underlies all ultrafast singlet fission," Dr Akshay Rao, a Research Associate at St John's College, Cambridge, who led the Cambridge team, said. "The picture that emerges is that when they are excited by light, the intrinsic vibrations drive the development of a new electronic state."

By understanding the fundamentals of singlet exciton fission, the study opens up the possibility of designing new singlet fission materials that would enable the process to be effectively integrated into a new generation of highly efficient solar cells. Future research is already being planned in which the group will examine the precise vibrational states that are required for singlet exciton fission to happen, which will further add to this knowledge.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
St John's College, University of Cambridge
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SOLAR DAILY
EU members reach renewable targets early
Brussels (UPI) Mar 10, 2015
Three members of the European Union have already achieved their renewable energy goals for 2020, the European statistics office said Tuesday. EU member states are obligated to use renewable resources for 20 percent of final their energy consumption by 2020. Eurostat reported Bulgaria, Estonia and Sweden reached their targets five years ahead of schedule. "Moreover, Lithuania, Rom ... read more


SOLAR DAILY
CT scanning shows why tilting trees produce better biofuel

Bioelectrochemical processes have the potential to one day replace petrochemistry

Biofuel proteomics

Miscanthus-based ethanol boasts higher profits

SOLAR DAILY
Russian SAR-401 Space Robot Ready for the ISS

Kids and robots learn to write together

25 teams to participate in DARPA Robotics Challenge Finals

Rise of the Machines: video gamers beware

SOLAR DAILY
Time ripe for Atlantic wind, advocates say

Wind energy: TUV Rheinland supervises Senvion sale

Bright spot for wind farms amid RET gloom

Allianz acquire OX2 wind farm in northern Sweden

SOLAR DAILY
Alarming old and young drivers

Lyft secures $530 mn to take on Uber

China's Alibaba drives into 'Internet car' industry

China state TV targets foreign auto firms

SOLAR DAILY
Scientists make breakthrough in understanding nuclear fusion

Japan space scientists make wireless energy breakthrough

High performance, lightweight supercapacitor electrodes of the future

AVX releases new guide for medium and high power film capacitors

SOLAR DAILY
Hungary denies EU nuclear veto report

Hungary, EU say in talks over Budapest-Russia nuclear deal

Taiwan stages mass anti-nuclear rally

South China nuclear plant operates second unit

SOLAR DAILY
Polish Power Exchange hosts 18th AFM Annual Conference

Reducing emissions with a more effective carbon capture method

China to further streamline energy layout amid "new normal"

Where you live could mean 'greener' alternatives do more harm than good

SOLAR DAILY
The green lungs of our planet are changing

Landless Brazilians in GM eucalyptus protest

Direct evidence that drought-weakened Amazonian forests 'inhale less carbon'

Amazon deforestation 'threshold' causes species loss to accelerate




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.