Solar Energy News  
IRON AND ICE
Scientists peer inside an asteroid
by Staff Writers
Boulder CO (SPX) Oct 09, 2020

stock illustration only

New findings from NASA's OSIRIS-REx mission suggest that the interior of the asteroid Bennu could be weaker and less dense than its outer layers - like a creme-filled chocolate egg flying though space.

The results appear in a study published in the journal Science Advances and led by the University of Colorado Boulder's OSIRIS-REx team, including professors Daniel Scheeres and Jay McMahon. The findings could give scientists new insights into the evolution of the solar system's asteroids - how bodies like Bennu transform over millions of years or more.

OSIRIS-REx rendezvoused with Bennu, an asteroid orbiting the sun more than 200 million miles from Earth, in late 2018. Since then, the spacecraft, built by Colorado-based Lockheed Martin, has studied the object in more detail than any other asteroid in the history of space exploration.

So far, however, one question has remained elusive: What's Bennu like on the inside?

Scheeres, McMahon and their colleagues on the mission's radio science team now think that they have an answer - or at least part of one. Using OSIRIS-REx's own navigational instruments and other tools, the group spent nearly two years mapping out the ebbs and flows of Bennu's gravity field. Think of it like taking an X-ray of a chunk of space debris with an average width about the height of the Empire State Building.

"If you can measure the gravity field with enough precision, that places hard constraints on where the mass is located, even if you can't see it directly," said Andrew French, a coauthor of the new study and a former graduate student at CU Boulder, now at NASA's Jet Propulsion Laboratory (JPL).

What the team has found may also spell trouble for Bennu. The asteroid's core appears to be weaker than its exterior, a fact that could put its survival at risk in the not-too-distant future.

"You could imagine maybe in a million years or less the whole thing flying apart," said Scheeres, a distinguished professor in the Ann and H.J. Smead Department of Aerospace Engineering Sciences.

Evolution of asteroids
Of course, that's part of the fun of studying asteroids. Scheeres explained that Bennu belongs to a class of smaller bodies that scientists call "rubble pile" asteroids - which, as their name suggests, resemble loosely held-together mounds of debris.

Asteroids also change over time more than people think.

"None of them have sat out there unchanging since the dawn of the solar system," Scheeres said. "They're being changed by things like sunlight affecting how they spin and collisions with other asteroids."

To study how Bennu and other similar asteroids may change, however, he and his colleagues needed to take a peek inside.

This is where the team got lucky. When OSIRIS-REx first arrived at Bennu, the spacecraft spotted something unusual: Over and over again, tiny bits of material, some just the size of marbles, seemed to pop off the asteroid and into space. In many cases, those particles circled Bennu before falling back down to the surface. Members of the mission's radio science team at JPL were able to witness how the body's gravity worked first-hand - a bit like the apocryphal story of Isaac Newton inferring the existence of gravity after observing an apple falling on his head.

"It was a little like someone was on the surface of the asteroid and throwing these marbles up so they could be tracked," Scheeres said. "Our colleagues could infer the gravity field in the trajectories those particles took."

Squishy center
In the new study, Scheeres and his colleagues combined those records of Bennu's gravity at work with data from OSIRIS-REx itself - precise measurements of how the asteroid tugged on the spacecraft over a period of months. They discovered something surprising: Before the mission began, many scientists had assumed that Bennu would have a homogenous interior. As Scheeres put it, "a pile of rocks is a pile of rocks."

But the gravity field measurements suggested something different. To explain those patterns, certain chunks of Bennu's interior would likely need to be more tightly packed together than others. And some of the least dense spots in the asteroid seemed to lie around the distinct bulge at its equator and at its very core.

"It's as if there is a void at its center, within which you could fit a couple of football fields," Scheeres said.

The asteroid's spin may be responsible for that void. Scientists know that the asteroid is spinning faster and faster over time. That building momentum could, Scheeres said, be slowly pushing material away from the asteroid's center and toward its surface. Bennu, in other words, may be in the process of spinning itself into pieces.

"If its core has a low density, it's going to be easier to pull the entire asteroid apart," Scheeres said.

For the scientist, the new findings are bittersweet: After measuring Bennu's gravity field, Scheeres and his team have mostly wrapped up their work on the OSIRIS-REx mission.

Their results have contributed to the mission's sample analysis plan, which is currently in development. The returned sample will be analyzed to determine the cohesion between grains - a key physical property that affects the mass distribution observed in the team's study.

"We were hoping to find out what happened to this asteroid over time, which can give us better insight into how all of these small asteroids are changing over millions, hundreds of millions or even billions of years," Scheeres said. "Our findings exceeded our expectations."

Links to the four papers:

+ Research paper 1
+ Research paper 2
+ Research paper3
+ Research paper 4


Related Links
University Of Colorado At Boulder
Asteroid and Comet Mission News, Science and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


IRON AND ICE
GMV to carry out the development phase of the GNC system to guide the HERA mission
Madrid, Spain (SPX) Sep 30, 2020
On 15 September, the European Space Agency (ESA) signed with the German company OHB the 129.4-million euro contract covering the detailed design, manufacturing, and testing of the HERA mission. This mission, ESA's first ever planetary defense mission, will be Europe's contribution to an international asteroid deflection effort carried out jointly with NASA and due for lift-off in October 2024. The contract takes in the complete design of the interplanetary probe, integration and tests, including a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Lighting the path to recycling carbon dioxide

Inducing plasma in biomass could make biogas easier to produce

Novel photocatalysts can perform solar-driven conversion of CO2 into fuel

Cascades with carbon dioxide

IRON AND ICE
Subterranean Challenge Identifies Qualified Teams for Cave Circuit Virtual Competition

Helping robots avoid collisions

First tests for landing the Martian Moons eXploration Rover

Teams demonstrate swarm tactics in fourth major OFFSET Field Experiment

IRON AND ICE
California offshore winds show promise as power source

Offshore wind power now so cheap it could pay money back to consumers

Trust me if you can

IRON AND ICE
Investors load $500 mn into Uber's trucking business

The Safe Light Regional Vehicle makes its debut

O2 launches UK's first driverless cars lab

Electric truck startup Nikola postpones December event

IRON AND ICE
Ecological power storage battery made of vanillin

Energy-harvesting plastics pass the acid test

Could megatesla magnetic fields be realized on Earth?

KIST develops ambient vibration energy harvester with automatic resonance tuning mechanism

IRON AND ICE
Framatome US Richland site opens its new $20 million uranium recovery facility

Study: Renewables, not nuclear power, can provide truly low carbon energy

Filtering radioactive elements from water

Framatome joins with academia and industry partners to develop nuclear reactor digital twins

IRON AND ICE
Deloitte scraps report on climate change benefit for GDP

Rising nitrous oxide emissions could put Paris Agreement goals out of reach

Renewable player overtakes ExxonMobil in market value

Canada spends on infrastructure to boost jobs, cut CO2 emissions

IRON AND ICE
Ecuadoran indigenous activist recognized by Time for fighting for her jungle

Brazil court blocks move to repeal mangrove protections

Brazil's Bolsonaro hits back at Biden over rainforest

Pine needles evolved to help trees cope with rainfall









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.