Subscribe free to our newsletters via your
. Solar Energy News .




CHIP TECH
Cheap radio frequency antenna printed with graphene ink
by Staff Writers
Washington DC (SPX) May 21, 2015


These scanning electron microscope images show the graphene ink after it was deposited and dried (a) and after it was compressed (b). Compression makes the graphene nanoflakes more dense, which improves the electrical conductivity of the laminate. Image courtesy Xianjun Huang, et al./ University of Manchester.

Scientists have moved graphene - the incredibly strong and conductive single-atom-thick sheet of carbon - a significant step along the path from lab bench novelty to commercially viable material for new electronic applications.

Researchers from the University of Manchester, together with BGT Materials Limited, a graphene manufacturer in the United Kingdom, have printed a radio frequency antenna using compressed graphene ink. The antenna performed well enough to make it practical for use in radio-frequency identification (RFID) tags and wireless sensors, the researchers said. Even better, the antenna is flexible, environmentally friendly and could be cheaply mass-produced. The researchers present their results in the journal Applied Physics Letters, from AIP Publishing.

The study demonstrates that printable graphene is now ready for commercial use in low-cost radio frequency applications, said Zhirun Hu, a researcher in the School of Electrical and Electronic Engineering at the University of Manchester.

"The point is that graphene is no longer just a scientific wonder. It will bring many new applications to our daily life very soon," added Kostya S. Novoselov, from the School of Physics and Astronomy at the University of Manchester, who coordinated the project.

Graphene Gets Inked
Since graphene was first isolated and tested in 2004, researchers have striven to make practical use of its amazing electrical and mechanical properties. One of the first commercial products manufactured from graphene was conductive ink, which can be used to print circuits and other electronic components.

Graphene ink is generally low cost and mechanically flexible, advantages it has over other types of conductive ink, such as solutions made from metal nanoparticles.

To make the ink, graphene flakes are mixed with a solvent, and sometimes a binder like ethyl cellulose is added to help the ink stick. Graphene ink with binders usually conducts electricity better than binder-free ink, but only after the binder material, which is an insulator, is broken down in a high-heat process called annealing. Annealing, however, limits the surfaces onto which graphene ink can be printed because the high temperatures destroy materials like paper or plastic.

The University of Manchester research team, together with BGT Materials Limited, found a way to increase the conductivity of graphene ink without resorting to a binder. They accomplished this by first printing and drying the ink, and then compressing it with a roller, similar to the way new pavement is compressed with a road roller.

Compressing the ink increased its conductivity by more than 50 times, and the resulting "graphene laminate" was also almost two times more conductive than previous graphene ink made with a binder.

The high conductivity of the compressed ink, which enabled efficient radio frequency radiation, was one of the most exciting aspects of the experiment, Hu said.

Paving the Way to Antennas, Wireless Sensors, and More
The researchers tested their compressed graphene laminate by printing a graphene antenna onto a piece of paper. The antenna measured approximately 14 centimeters long, and 3.5 millimeter across and radiated radio frequency power effectively, said Xianjun Huang, who is the first author of the paper and a PhD candidate in the Microwave and Communcations Group in the School of Electrical and Electronic Engineering.

Printing electronics onto cheap, flexible materials like paper and plastic could mean that wireless technology, like RFID tags that currently transmit identifying info on everything from cattle to car parts, could become even more ubiquitous.

Most commercial RFID tags are made from metals like aluminium and copper, Huang said, expensive materials with complicated fabrication processes that increase the cost.

"Graphene based RFID tags can significantly reduce the cost thanks to a much simpler process and lower material cost," Huang said. The University of Manchester and BGT Materials Limited team has plans to further develop graphene enabled RFID tags, as well as sensors and wearable electronics.

The article, "Binder-free Highly Conductive Graphene Laminate for Low Cost Printed Radio Frequency Applications," is authored by Xianjun Huang, Ting Leng, Xiao Zhang, Jia Cing Chen, Kuo Hsin Chang, Andre K. Geim, Kostya S. Novoselov, and Zhirun Hu. It will be published in the journal Applied Physics Letters on May 19, 2015 (DOI: 10.1063/1.4919935).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
New options for spintronic devices
Berlin, Germany (SPX) May 20, 2015
Scientists from Paris and Helmholtz-Zentrum Berlin have been able to switch ferromagnetic domains on and off with low voltage in a structure made of two different ferroic materials. The switching works slightly above room temperature. Their results, which are published online in Scientific Reports, might inspire future applications in low-power spintronics, for instance for fast and efficient da ... read more


CHIP TECH
A model for bioenergy feedstock/vegetable double-cropping systems

WSU researchers produce jet fuel compounds from fungus

For biofuels and climate, location matters

Ethanol may release more of some pollutants than previously thought

CHIP TECH
Exploring a new frontier of cyber-physical systems: The human body

Clinical trial shows intuitive control of robotic arm using thought

Implants read intentions of tetraplegic patient from brain activity

Fast Track Program invites non-traditional Roboticists to bolster security

CHIP TECH
EOLOS floating buoy scoops innovation award

Offshore wind turbine construction could be putting seals' hearing at risk

Build for Rhode Island wind farm one step closer

English Channel to host wind farm

CHIP TECH
Can virtual drivers resembling the user increase trust in smart cars

US pushes pedal on car-to-car communication

Google self-driving prototype cars to hit public roads

Out with heavy metal

CHIP TECH
New class of swelling magnets have the potential to energize the world

Star power: Troubled ITER nuclear fusion project looks for new path

Tiny grains of lithium dramatically improve performance of fusion plasma

Calgary to lead CREATE student training program in carbon capture

CHIP TECH
China's nuclear power capacity set to reach 30 mln kilowatts

DEQ: Decision on Great Lakes Nuclear Waste Site'Out of Our Hands'

Japan court upholds nuclear power plant injunction

Japan nuclear watchdog OKs one more reactor

CHIP TECH
San Francisco Launches HERO Clean Energy Program

American energy use up slightly, carbon emissions almost unchanged

Canada plans 30% CO2 emissions cut by 2030: minister

Carbon price vital for zero-emission goal: World Bank

CHIP TECH
Drought-induced tree mortality accelerating in forests

Study reveals how eastern US forests came to be

Impact of increased atmospheric CO2 concentration on European trees

Ecuador breaks Guinness reforestation record




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.