Solar Energy News  
CHIP TECH
Scientists pump up chances for quantum computing
by Staff Writers
Adelaide, Australia (SPX) Jul 06, 2018

illustration only

University of Adelaide-led research has moved the world one step closer to reliable, high-performance quantum computing.

An international team has developed a ground-breaking single-electron "pump". The electron pump device developed by the researchers can produce one billion electrons per second and uses quantum mechanics to control them one-by-one. And it's so precise they have been able to use this device to measure the limitations of current electronics equipment.

This paves the way for future quantum information processing applications, including in defence, cybersecurity and encryption, and big data analysis.

"This research puts us one step closer to the holy grail - reliable, high-performance quantum computing," says project leader Dr Giuseppe C. Tettamanzi, Senior Research Fellow, at the University of Adelaide's Institute for Photonics and Advanced Sensing.

Published in the journal Nano Letters, the researchers also report observations of electron behaviour that's never been seen before - a key finding for those around the world working on quantum computing.

"Quantum computing, or more broadly quantum information processing, will allow us to solve problems that just won't be possible under classical computing systems," says Dr Tettamanzi.

"It operates at a scale that's close to an atom and, at this scale, normal physics goes out the window and quantum mechanics comes into play.

"To indicate its potential computational power, conventional computing works on instructions and data written in a series of 1s and 0s - think about it as a series of on and off switches; in quantum computing every possible value between 0 and 1 is available. We can then increase exponentially the number of calculations that can be done simultaneously."

This University of Adelaide team, in collaboration with the University of Cambridge, Aalto University in Finland, University of New South Wales, and the University of Latvia, is working in an emerging field called electron quantum optics. This involves controlled preparation, manipulation and measurement of single electrons. Although a considerable amount of work has been devoted world-wide to understand electronic quantum transport, there is much still to be understood and achieved.

"Achieving full control of electrons in these nano-systems will be highly beneficial for realistic implementation of a scalable quantum computer. We, of course, have been controlling electrons for the past 150 years, ever since electricity was discovered. But, at this small scale, the old physics rules can be thrown out," says Dr Tettamanzi.

"Our final goal is to provide a flow of electrons that's reliable, continuous and consistent - and in this research, we've managed to move a big step towards realistic quantum computing.

"And, maybe equally exciting, along the way we have discovered new quantum effects never observed before, where, at specific frequencies, there is competition between different states for the capture of the same electrons. This observation will help advances in this game-changing field."

Research paper


Related Links
University of Adelaide
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Ultimate precision for sensor technology using qubits and machine learning
Helsinki, Finland (SPX) Jul 04, 2018
There are limits to how accurately you can measure things. Think of an X-ray image: it is likely quite blurry and something only an expert physician can interpret properly. The contrast between different tissues is rather poor but could be improved by longer exposure times, higher intensity, or by taking several images and overlapping them. But there are considerable limitations: humans can safely be exposed to only so much radiation, and imaging takes time and resources. A well-established rule o ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Researchers report novel hybrid catalyst to split water

Researchers discover new enzyme paradigm for critical reaction in converting lignin to useful products

I.Coast studies first cocoa-fired power station

Orange, tea tree and eucalyptus oils sweeten diesel fumes

CHIP TECH
Next-generation robotic cockroach can explore under water environments

Rough terrain? No problem for beaver-inspired autonomous robot

Illinois' crop-counting robot earns top recognition at leading robotics conference

'Flying brain' designed to follow German astronaut launches Friday

CHIP TECH
ENGIE: Wind energy footprint firmed up in Norway

Batteries make offshore wind energy debut

India embarks on offshore wind energy effort

New wind turbines are even efficient in low winds

CHIP TECH
Lyft pushes into bikes with new acquisition

Strict new emissions tests disrupt Volkswagen production

Volkswagen to stash cars at Berlin's problem airport

Lyft value jumps to $15.1 billion in new funding round

CHIP TECH
New experimental results from the largest and most sophisticated stellerator

Buildings as power stations - data shows they work: They generate more energy than they consume

Atomic movie of melting gold could help design materials for future fusion reactors

Paving the way for safer, smaller batteries and fuel cells

CHIP TECH
Greenpeace activists 'crash' drone into French nuclear plant

The vanishing nuclear industry

Japan aims for 24% renewable energy but keeps nuclear central

Electrospun sodium titanate speeds up the purification of nuclear waste water

CHIP TECH
Path to zero emissions starts out easy, but gets steep

Green electricity isn't enough to curb global warming

European Commission: Luxembourg tax laws benefited ENGIE

Hong Kong consortium makes $9.8 bn bid for Australia's APA

CHIP TECH
How mangroves help keep the planet cool

Lemur losses could threaten Madagascar's largest tree species

I.Coast to invest 1 billion euros to replenish forest cover

World's poorest unfairly shoulder costs of tropical forest conservation









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.