Solar Energy News  
TIME AND SPACE
Scientists reproduce the dynamics behind astrophysical shocks
by Staff Writers
Plainsboro NJ (SPX) Jul 30, 2019

a big day out

High-energy shock waves driven by solar flares and coronal mass ejections of plasma from the sun erupt throughout the solar system, unleashing magnetic space storms that can damage satellites, disrupt cell phone service and blackout power grids on Earth. Also driving high-energy waves is the solar wind - plasma that constantly flows from the sun and buffets the Earth's protective magnetic field.

Now experiments led by researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) in the Princeton Center for Heliophysics have for the first time reproduced the process behind the source of such shocks. The findings bridge the gap between laboratory and spacecraft observations and advance understanding of how the universe works.

Sudden jumps
The experiments, reported in Physical Review Letters, show how the interaction of plasma - the state of matter composed of free electrons and atomic nuclei, or ions - can cause sudden jumps in plasma pressure and magnetic field strength that can accelerate particles to near the speed of light. Such shocks are "collisionless" because they are formed by the interaction of waves and plasma particles rather than by collisions between the particles themselves.

The research produced measurement of the full run-up to shocks. "Direct measurement is an elegant way to see how the particles are moving and interacting," said physicist Derek Schaeffer of PPPL and Princeton University, who led the research. "Our paper shows that we can employ a powerful diagnostic to study the particle motions that lead to shocks."

The research, conducted on the Omega laser facility at the University of Rochester, produced a laser-driven plasma - called a "piston" plasma - that expanded at the supersonic rate of more than one million miles per hour through a pre-existing ambient plasma. The expansion accelerated ions in the ambient plasma to speeds of roughly half-a-million miles per hour, simulating the forerunner to collisionless shocks that occur throughout the cosmos.

The research unfolded in several stages:
+ First, creation of the piston plasma reproduced the supersonic plasmas that form in outer space. The piston acted like a snowplow, sweeping up ions in the ambient plasma embedded in a magnetic field.

+ As more of these ions became swept up, they formed a barrier that kept the piston from acting further. "Once you've piled up enough 'snow', the shock decouples from the piston," Schaeffer said.

+ The halted piston handed off formation of the shock to the highly compressed magnetized plasma, which gave rise to the sudden collisionless jump.

Researchers used a diagnostic called Thompson scattering to track these developments. The diagnostic detects laser light scattered off the electrons in plasma, enabling measurement of the temperature and density of the electrons and the speed of the flowing ions.

The results, the authors write, show that laboratory experiments can probe the behavior of plasma particles in the precursor to collisionless astrophysical shocks, "and can complement, and in some cases overcome the limitations of similar measurements undertaken by spacecraft missions."

Ultimate goal
While this research reproduced the process that sets off shocks, the ultimate goal is to measure the shock-accelerated particles themselves. For that step, said Schaeffer, "the same diagnostic can be used once we develop the capability to drive strong enough shocks. As a bonus," he adds, "this diagnostic is similar to how spacecraft measure particle motions in space shocks, so future results can be directly compared."

Research paper


Related Links
Princeton Plasma Physics Laboratory
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Multiple laser beamlets show better electron and ion acceleration
Osaka, Japan (SPX) Jul 26, 2019
A research team led by Osaka University showed how multiple overlapping laser beams are better at accelerating electrons to incredibly fast speeds, as compared with a single laser. This method can lead to more powerful and efficient X-ray and ion generation for laboratory astrophysics, cancer therapy research, as well as a path toward controlled nuclear fusion. High-energy density physics is a field of study that deals with conditions much closer the chaotic moments immediately following the Big B ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Research shows black plastics could create renewable energy

Vampire algae killer's genetic diversity poses threat to biofuels

Left out to dry: A more efficient way to harvest algae biomass

Symbiotic upcycling: Turning 'low value' compounds into biomass

TIME AND SPACE
In the shoes of a robot: The future approaches

Kitchen disruption: better food through artificial intelligence

Get up and go bots getting closer, study says

Russia's Humanoid Robot FEDOR Renamed to Skybot Ahead of Its First Space Mission

TIME AND SPACE
Kenya launches Africa's biggest wind farm

Stanford study shows how to improve production at wind farms

Windmill protesters placed on Dutch terror list

Can sound protect eagles from wind turbine collisions?

TIME AND SPACE
Rat brain offers insights to engineers designing self-navigating cars, robots

Automakers reach emissions deal with California, in rebuff to Trump

China's BAIC takes 5% stake in Daimler: German carmaker

GM's Cruise delays launch of robo-taxis

TIME AND SPACE
Revised computer code accurately models an instability in fusion plasmas

Harvesting energy from the human knee

A new material for the battery of the future, made in UCLouvain

Materials scientists uncover source of degradation in sodium batteries

TIME AND SPACE
UN nuclear watchdog names interim chief

UN nuclear watchdog to start search for new chief

UN nuclear watchdog chief Amano dies at 72

US hits Iran 'nuclear enrichment network' with sanctions

TIME AND SPACE
Global warming = more energy use = more warming

Big energy discussion 'scrubbed from record' at UN climate talks

New York to get one of world's most ambitious carbon reduction plans

Wartsila and Summit sign Bangladesh's biggest ever service agreement to maintain Summit's 464 MW power plants

TIME AND SPACE
Brazil police probe tribal leader's killing, village invasion

Rare footage of Brazil tribe threatened by loggers: activists

Joshua trees facing extinction

Finland's UPM to go ahead with $3 bn pulp plant in Uruguay









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.