Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Scientists shed light on glowing materials
by Staff Writers
London UK (SPX) Aug 22, 2012


File image.

Researchers at King's College London, in collaboration with European research institutes ICFO (Barcelona) and AMOLF (Amsterdam), have succeeded in mapping how light behaves in complex photonic materials inspired by nature, like iridescent butterfly wings. Scientists have broken the limit of light resolution at the nanoscale and delivered a fundamental insight into how light and matter interact, which could lead to the development of enhanced bio-sensors for healthcare and more efficient solar cells and displays.

Optical measurements of light waves at the nanoscale have always been limited by the resolution of the optical microscope, but researchers were able to break this limit using a new technique which combines electronic excitation and optical detection, to explore the inside of a photonic crystal and study the confinement of light.

Working with a spatial resolution of 30 nanometers, scientists examined the structures at a resolution more than ten times smaller than the diffraction limit for light, revealing a greater understanding of how light interacts with matter to create, for example, the visible iridescence phenomena observed in nature on the wings of butterflies.

Dr Riccardo Sapienza, from the Department of Physics at King's, said: 'We were thrilled in the lab to observe the finer details of the photonic crystals that were simply inaccessible before. This is very important as it allows scientists to test optical theories to a new level of accuracy, fully characterise new optical materials and test new optical devices.'

The collaborative research has been published in the journal Nature Materials.

The team constructed an artificial two-dimensional photonic crystal by etching a hexagonal pattern of holes in a very thin silicon nitride membrane. Photonic crystals are nanostructures in which two materials with different refractive indices are arranged in a regular pattern, giving rise to exotic optical properties. Natural photonic crystals can be found in certain species of butterflies, birds and beetles as well as in opal gemstones where they give rise to beautiful shimmering colours.

The photonic crystal inhibits light propagation for certain colours of light, which leads to strong reflection of those colours, as observed when such materials 'catch the light'. By leaving out one hole, a very small cavity can be defined where the surrounding crystal acts as a mirror for the light, making it possible to strongly confine it within a so-called 'crystal defect cavity'.

The scientists based their research methods on a technique used in geology, called cathodoluminescence, whereby a beam of electrons is generated by an electron gun and impacted on a luminescent material, causing the material to emit visible light. Professor Albert Polman and his group in AMOLF modified this technique to access nanophotonics materials. He said: 'In the past few years we have worked hard with several technicians and researchers to develop and refine this new instrument.'

Dr Sapienza said: 'Each time a single electron from the electron gun reaches the sample surface it generates a burst of light as if we had placed a fluorescent molecule at the impact location. Scanning the electron beam we can visualise the optical response of the nanostructure revealing features 10 times smaller than ever done before.'

Professor Niek van Hulst, ICFO, said: 'It is fascinating to finally have an immediate view of the light in all its colours inside a photonic crystal. For years we have been struggling with scanning near-field probes and positioning of nano-light-sources. Now the scanning e-beam provides a local broad-band dipolar light source that readily maps all localised fields inside a photonic crystal cavity.'

With major advances in nanofabrication techniques it has become possible to construct artificial photonic crystals with optical properties that can be accurately engineered. These structures can be used to make high-quality nanoscale optical waveguides and cavities, which are important in telecommunication and sensing applications.

Dr Sapienza said: 'Our research provides a fundamental insight into light at the nanoscale and, in particular, helps in understanding how light and matter interact. This is the key to advance nanophotonic science and it can be useful to design novel optical devices like enhanced bio-sensors for healthcare, more efficient solar cells and displays, or novel quantum optics and information technologies.'

.


Related Links
King's College London
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Good vibrations
Berkeley CA (SPX) Aug 20, 2012
A long-time staple of science fiction is the tractor beam, a technology in which light is used to move massive objects - recall the tractor beam in the movie Star Wars that captured the Millennium Falcon and pulled it into the Death Star. While tractor beams of this sort remain science fiction, beams of light today are being used to mechanically manipulate atoms or tiny glass beads, with r ... read more


TECH SPACE
Warning issued for modified algae

Genetically Engineered Algae For Biofuel Pose Potential Risks That Should Be Studied

Argentina unhappy over EU biofuels curbs

New biorefinery finds treasure in Starbucks' spent coffee grounds and stale bakery goods

TECH SPACE
Soft robots, in color

NASA Historic Test Stands Make Way for New Reusable Robotic Lander Neig

Dextrous robotic hand gets thumbs up

The first robot that mimics the water striders' jumping abilities

TECH SPACE
Maximum Protection against Dust; Minimal Effort

US Wind Power Market Riding a Wave That Is Likely to Crest in 2012

Wind farms: A danger to ultra-light aircraft?

Off-shore wind power project considered

TECH SPACE
China's Geely H1 profit rises 9% as exports surge

Germans prefer bigger engines: study

US launches test of Wi-Fi to prevent car accidents

American CEO of Czech truck-maker charged in graft case

TECH SPACE
Canada's Africa Oil increases estimates

Chavez unveils $130 billion oil expansion

Teaching a microbe to make fuel

The Building as an Energy Storage Device

TECH SPACE
Japan press mixed on PM meet with anti-nuclear camp

BHP Billiton scraps mega mine expansion

Report warns of India nuclear power safety

Japan PM meets anti-nuclear demonstrators

TECH SPACE
Serbia institutes energy public tenders

Northrop Grumman Receives Highest Assurance for Accuracy of Its Greenhouse Gas Emissions Inventory

US carbon emissions in surprise drop

Rio+20: A Move Towards More Sustainable Transportation

TECH SPACE
Myanmar in deforestation crisis

Widespread local extinctions in tropical forest 'remnants'

Marine research in the Brazilian rain forest

Thai forces 'kill 38 Cambodian loggers in six months'




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement