Solar Energy News  
STELLAR CHEMISTRY
Searching for the weakest detectable magnetic fields in white dwarfs
by Staff Writers
La Palma, Spain (SPX) Nov 26, 2018

file illustration

Magnetic fields are present in a large variety of stars across the Hertzsprung-Russell diagram, during all evolutionary stages from pre-main sequence stars, to main sequence stars and evolved stars, up to the final stages when the star explodes as a supernova.

Magnetic fields play important roles in stellar evolution. They transfer angular momentum, both internally during stellar evolution, and externally during periods of accretion or mass loss. Even a fairly weak magnetic field can suppress convection in stellar atmospheres and affect cooling times of extremely old white dwarfs. While the effects of the magnetic fields are well observed and sometime even understood, the origin of stellar magnetic fields is often unknown, and we do not know how fields evolve as stars evolve.

Detection of a stellar magnetic field generally relies on observation of splitting and/or polarisation of spectral lines produced by the Zeeman effect. In a general way, splitting of spectral lines by the Zeeman effect is detected in a normal flux spectrum, and allows one to estimate the typical amplitude of the magnetic field, averaged over the star.

Circular polarisation in a spectral line makes it possible to detect the averaged line-of-sight component of the magnetic field, and can be sensitive to a magnetic field that is an order of magnitude or more weaker than that detectable from line splitting.

Interest has been increasing in recent years in obtaining a clear observational overview of the occurrence and characteristics of magnetic fields over the whole Hertzsprung-Russell diagram. A very interesting example is the magnetic fields that occur in about 10% of white dwarfs, which range in strength from about 1kG (1 kilogauss or 0.1 tesla) to almost 1,000 MG.

Because spectropolarimetry is the most sensitive of the available field discovery methods, astronomers have been using ISIS on the William Herschel Telescope (WHT), FORS on the Very Large Telescope (VLT), and Espadons on the Canada-France-Hawaii Telescope (CFHT). Each of these instruments has specific strengths.

Both ISIS and FORS are particularly well suited to detecting very weak fields in relatively faint (V > 14) white dwarfs. Remarkably, because ISIS can do spectropolarimetry at an optimal resolving power around the H-alpha line in the red, it is possible to obtain the most sensitive field measurements, even though the telescope area is only one-quarter of that of the VLT.

The ongoing ISIS survey to find more weak-field white dwarfs has the potential to substantially improve the knowledge of the actual distribution of magnetic field strengths among white dwarfs, to provide more bright examples of weak-field stars for detailed modeling and analysis, and to assist us in understanding whether magnetic fields decay during white dwarf cooling or whether some process(es) generate new magnetic flux.

J. D. Landstreet, S. Bagnulo, S., G. Valyavin, A. F. Valeev, 2018, "Monitoring and Modeling of White Dwarfs with Extremely Weak Magnetic Fields. WD 2047+372 and WD 2359-434," A and A, 607, A92

S. Bagnulo and J. D. Landstreet, 2018, "Searching for the Weakest Detectable Magnetic Fields in White Dwarfs. Highly-Sensitive Measurements from First VLT and WHT Surveys," A and A, 618, A113


Related Links
Isaac Newton Group Of Telescopes
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Astronomers discover giant relic of disrupted 'tadpole' galaxy
Tel Aviv, Israel (SPX) Nov 26, 2018
A team of astronomers from Israel, the United States and Russia has identified a disrupted galaxy resembling a giant tadpole, complete with an elliptical head and a long, straight tail, about 300 million light years away from Earth. The galaxy is 1 million light-years long from end to end, 10 times longer than the Milky Way. "We have found a giant, exceptional relic of a disrupted galaxy," says Dr. Noah Brosch of The Florence and George Wise Observatory at Tel Aviv University's School of Physics a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
How to convert carbon dioxide into plastics and other products

Affordable catalyst for CO2 recycling

Bio jet fuels good for the climate, but technologies need tweaking

Cotton-based hybrid biofuel cell could power implantable medical devices

STELLAR CHEMISTRY
GMV leads an ambitious campaign of space robotics trials

Electronic glove gives robots a sense of touch

CODE demonstrates autonomy and collaboration with minimal human commands

Nepal's first robot waiter is ready for orders

STELLAR CHEMISTRY
Roadmap to accelerate offshore wind industry in the United States

Denmark-based Orsted adds to its U.S. wind energy assets

Making wind farms more efficient

DNV GL successfully completed technical due diligence for 25 MW Windfloat Atlantic floating wind project

STELLAR CHEMISTRY
Sparks fly in Berlin and Brussels over cancelled diesel meet

Diesel driving bans 'self-destructive', says German minister

Volkswagen to spend 44 bn euros on 'electric offensive'

Germany tweaks law to limit diesel car bans

STELLAR CHEMISTRY
Radical approach for brighter LEDs

Making it crystal clear: Crystallinity reduces resistance in all-solid-state batteries

The shape of things to come: Flexible, foldable supercapacitors for energy storage

RUDN chemists made an electrode for hydrogen fuel production out of Chinese flour

STELLAR CHEMISTRY
Japan faces difficult energy choices

GE Hitachi and PRISM selected for US Dept of Energy's Versatile Test Reactor program

Global Nuclear Fuel's GENUSA Awarded Long-Term Fuel Supply Contract by TVO

Framatome marks opening of nuclear parts center at expanded solutions complex

STELLAR CHEMISTRY
EU court backs Dyson on vacuum cleaner energy tests

Mining bitcoin uses more energy than Denmark: study

Spain's Ibedrola sells hydro, gas-powered assets in U.K. for $929M

How will climate change stress the power grid

STELLAR CHEMISTRY
Large areas of the Brazilian rainforest at risk of losing protection

New Research: Streamside forests store tons of carbon

Bolsonaro election leaves indigenous Brazilians afraid for their land

Global reforestation efforts need to take the long view









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.