Solar Energy News  
SOLAR DAILY
Seeing the light: Researchers offer solution for efficiency problem of artificial photosynthesis
by Staff Writers
Matsumoto, Japan (SPX) Dec 06, 2018

Photoelectrochemical water splitting using "flux-grown photo anode" to convert solar energy and water into hydrogen fuel efficiently.

Hydrogen-powered electronics, travel, and more may be a step closer thanks to the work of a collaborative team of scientists in Japan. The researchers have developed a new method to more efficiently produce a key component needed to convert solar energy and water into hydrogen fuel, a process called photoelectrochemical water splitting.

They published their results in October in Applied Energy Materials, a journal of the American Chemical Society.

"With the abundance of solar energy and water, photoelectrochemical water splitting is a promising way to ease global environment and energy-storage issues," said lead author Katsuya Teshima, a professor of the Department of Materials Chemistry and the director of the Center for Energy and Environmental Science at Shinshu University. Teshima is also affiliated with the Nagano Prefecture Nanshin Institute of Technology.

In water splitting, a photo anode, which is a semiconductor and a metal cathode, absorbs sunlight. The semiconductor absorbs high-energy photons from that light, which forces splitting of the molecules around the semiconductor. This causes oxygen to divorce from hydrogen and combine with other free oxygen molecules. Hydrogen pairs and oxygen pairs can then be separately funneled through to the appropriate cathodes to be stored and used as energy.

The problem, however, according to Teshima and coworker, Suzuki, is that the first proposed photo anodes could only absorb UV light, which accounts for about five percent of the solar spectrum. Made of titanium oxide, these photo anodes are highly efficient at converting the solar energy they do capture, but they're not a viable option for industrial use because they capture so little solar energy.

Teshima and his team have turned to tantalum nitride, one of the most promising light-responsive materials available for use in water splitting. Not only can it absorb visible light, but it can also absorb light with a wavelength up to 600 nanometers, which allows for even more light absorption. The researchers previously fabricated the tantalum nitride crystals, but the process was complicated and the resulting crystal layer varied in thickness and coverage. Such unevenness can lead to inefficient or even completely ineffective water splitting efforts.

In this new attempt, Teshima placed the metal tantalum samples on top of powder sodium compounds, and heated them with ammonia gas at high temperatures. The researchers could control how evenly the sodium compounds reacted with the tantalum, as well as how thick the crystal layer grew by altering the ratio of the sodium compounds, the temperature, and the time.

"Our ultimate goal is to efficiently produce hydrogen and oxygen gasses from natural water by use of our flux-grown photo anode," Teshima said. "As environment and energy problems are global issues, we want to contribute to their solutions."

Research paper


Related Links
Shinshu University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Green finance blooms as investors look beyond profits
Paris (AFP) Dec 1, 2018
Environment-friendly finance is blooming thanks to investors willing to weigh profits against ecology, but decisions about meaningful investments can be complex. At first sight the idea of "green finance" as a vehicle to protect the environment or help businesses in their transition towards a more sustainable future seems non-controversial. But in fact, green finance lumps together a dizzying array of options and a debate is raging over which ones are truly worthy of green investor money - and ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Dead fish to power Norwegian cruise liners

Scientists uncovered the mechanism of fungal luminescence and created luminescent yeasts

How to convert carbon dioxide into plastics and other products

Affordable catalyst for CO2 recycling

SOLAR DAILY
Artificial joint restores wrist-like movements to forearm amputees

Flexible electronic skin aids human-machine interactions

Insight into swimming fish could lead to robotics advances

Embark on a NASA technology scavenger hunt with Optimus Prime

SOLAR DAILY
Coordinated development could help wind farms be better neighbors

Roadmap to accelerate offshore wind industry in the United States

Denmark-based Orsted adds to its U.S. wind energy assets

Making wind farms more efficient

SOLAR DAILY
Madrid orders removal of electric scooters

Volkswagen says next generation of combustion engine cars to be its last

China agrees to 'reduce and remove' tariffs on US cars: Trump

Luxury 'Red Flag' models buck China auto sales slump

SOLAR DAILY
Interfacial electronic state improving hydrogen storage capacity in Pd-MOF materials

New catalyst produces cheap hydrogen

ULEMCo Announces Record Efficiency Results for 100% Hydrogen Zero Emission Engine

Jumpin' droplets! Researchers seek to improve efficiency of condensers

SOLAR DAILY
Framatome signs MoU with Bruce Power for safety-related Life-Extension Program updates

Bulgaria leader opposed to increased carbon-cutting targets

France to close 14 nuclear reactors by 2035: Macron

Hard choices as Macron charts France's energy future

SOLAR DAILY
Making the world hotter: India's expected AC explosion

EU court backs Dyson on vacuum cleaner energy tests

Mining bitcoin uses more energy than Denmark: study

Spain's Ibedrola sells hydro, gas-powered assets in U.K. for $929M

SOLAR DAILY
Brazil loses 'one million football pitches' worth of forest

In Lebanon, climate change devours ancient cedar trees

How we can get more out of our forests

Large areas of the Brazilian rainforest at risk of losing protection









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.