Solar Energy News  
PHYSICS NEWS
Sierras lost water weight, grew taller during drought
by Carol Rasmussen for NASA Earth Science News
Pasadena CA (JPL) Dec 18, 2017


The Sierra Nevada range rose almost an inch during California's recent drought due to loss of water from within fractured rocks.

Loss of water from the rocks of California's Sierra Nevada caused the mountain range to rise nearly an inch (24 millimeters) in height during the drought years from October 2011 to October 2015, a new NASA study finds.

In the two following years of more abundant snow and rainfall, the mountains have regained about half as much water in the rock as they had lost in the preceding drought and have fallen about half an inch (12 millimeters) in height.

"This suggests that the solid Earth has a greater capacity to store water than previously thought," said research scientist Donald Argus of NASA's Jet Propulsion Laboratory in Pasadena, California, who led the study. Significantly more water was lost from cracks and soil within fractured mountain rock during drought and gained during heavy precipitation than hydrology models show.

Argus is giving a talk on the new finding at the American Geophysical Union's fall conference in New Orleans.

The research team used advanced data-processing techniques on data from 1,300 GPS stations in the mountains of California, Oregon and Washington, collected from 2006 through October 2017.

These research-quality GPS receivers were installed as part of the National Science Foundation's Plate Boundary Observatory to measure subtle tectonic motion in the region's active faults and volcanoes. They can monitor elevation changes within less than a tenth of an inch (a few millimeters).

The team found that the amount of water lost from within fractured mountain rock in 2011-2015 amounted to 10.8 cubic miles of water. This water is too inaccessible to be used for human purposes, but for comparison, the amount is 45 times as much water as Los Angeles currently uses in a year.

JPL water scientist Jay Famiglietti, who collaborated on the research, said the finding solves a mystery for hydrologists.

"One of the major unknowns in mountain hydrology is what happens below the soil. How much snowmelt percolates through fractured rock straight downward into the core of the mountain? This is one of the key topics that we addressed in our study."

Earth's surface falls locally when it is weighed down with water and rebounds when the weight disappears. Many other factors also change the ground level, such as the movement of tectonic plates, volcanic activity, high- and low-pressure weather systems, and Earth's slow rebound from the last ice age. The team corrected for these and other factors to estimate how much of the height increase was solely due to water loss from rock.

Before this study, scientists' leading theories for the growth of the Sierra were tectonic uplift or Earth rebounding from extensive groundwater pumping in the adjoining California Central Valley. Argus calculated that these two processes together only produced a quarter of an inch (7 millimeters) of growth - less than a third of the total.

Famiglietti said the techniques developed for this study will allow scientists to begin exploring other questions about mountain groundwater.

"What does the water table look like within mountain ranges? Is there a significant amount of groundwater stored within mountains? We just don't have answers yet, and this study identities a set of new tools to help us get them."

A paper on the research, titled "Sustained water loss in California's mountain ranges during severe drought from 2012 through 2015 inferred from GPS," was published in the Journal of Geophysical Research: Solid Earth.

PHYSICS NEWS
Researchers measure magnetic moment with greatest possible precision
Mainz, Germany (SPX) Nov 30, 2017
The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten years ago, and physicists of Johannes Gutenberg University Mainz (JGU), the Max Planck Institute for Nuclear Physics, GSI Darmstadt, and the RIKEN research institute in Japan are still performing experiments to measure this force with a sin ... read more

Related Links
Water Science at NASA
The Physics of Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
Bristol scientists turn beer into fuel

NREL develops novel method to produce renewable acrylonitrile

NREL research finds a sweet spot for engineering better cellulose-degrading enzymes

Hydrogen gas from enzyme production

PHYSICS NEWS
Aerospace's SeedTECH AI advances to second round of $5M IBM Watson XPRIZE

Engineers program tiny robots to move, think like insects

Speedy cockroaches help researchers train robots to walk

Not Your Grandpa's Robot: Russian Robot 'FEDOR' May Become Self-Learning

PHYSICS NEWS
Construction to start on $160 million Kennedy Energy Park in North Queensland

U.S. wind turbines getting taller and more efficient

New wind farm in service off the British coast

End tax credits for wind energy, Tennessee Republican says

PHYSICS NEWS
Denmark sets milestone for EV charges

US prosecutors confirm Uber target of criminal probe

Singapore launches electric car-sharing service

Daimler delivers its first all-electric trucks in Europe

PHYSICS NEWS
Lasers could soon trigger fusion energy, researchers predict

New power devices could drastically reduce energy waste

Battery research could triple range of electric vehicles

Laser-boron fusion now 'leading contender' for energy

PHYSICS NEWS
Mainz physicists propose a new method for monitoring nuclear waste

Bruce Power Contracts Major Industry Suppliers for Steam Generator Replacement Project

Cairo, Moscow sign contract for Egypt's first nuclear plant

AREVA NP Maintenance Technique Reduces Frequency of Component Inspections at Two Exelon Plants

PHYSICS NEWS
US void hard to miss at Paris climate summit

To save climate, stop investing in fossil fuels: economists

Improving sensor accuracy to prevent electrical grid overload

Japan faces challenges in cutting CO2, Moody's finds

PHYSICS NEWS
African deforestation not as great as feared

Cascading use is also beneficial for wood

New maps show shrinking wilderness being ignored at our peril

Forests are the key to fresh water









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.