Solar Energy News  
BIO FUEL
Significantly lower climate impact of contrails when using sustainable fuels
by Staff Writers
Ramstein, Germany (SPX) Jun 18, 2021

illustration only

The warming effect from contrails represents the largest contributor to the climate impact of air transport, having an even greater effect than carbon dioxide. Now, researchers at the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR), working together with the US National Aeronautics and Space Administration (NASA), have found that the climate impact of contrails can be reduced.

Using a 50-50 blend of kerosene and Sustainable Aviation Fuel (SAF), they achieved a halving of the number of ice crystals in contrails under actual flight conditions. This results in a 20 to 30 percent reduction in the climate impact of contrails. The research team reports its findings in the current issue of the Nature Research journal Communications Earth and Environment. The results pave the way to noticeably reducing the climate impact of aviation in the short term.

"During the joint flight tests conducted by DLR and NASA in 2018, we were able to clearly demonstrate that the use of sustainable fuels gives rise to fewer soot particles in engine exhaust gases and that this, in turn, results in fewer ice crystals in condensation trails. However, on average, the ice crystals are slightly larger," explains Christiane Voigt of the DLR Institute of Atmospheric Physics in Oberpfaffenhofen.

"This evidence is a breakthrough for the possibilities of climate-friendly air transport. A smaller number of ice crystals reduces the energy input into the atmosphere caused by contrails. This significantly reduces the climate-warming effect of contrail cirrus."

Flight in an exhaust plume
The flight tests took off from Ramstein Air Base in Rhineland-Palatinate during 2018. The DLR ATRA research aircraft, an Airbus A320, flew over Germany several times using different fuel blends. These included pure Jet A-1 kerosene as a reference, as well as 70-30 and 50-50 blends of kerosene and the sustainable biofuel HEFA (Hydroprocessed Esters and Fatty Acids).

NASA's DC-8 research aircraft followed the A320 with a delay of one to two minutes to collect data on its emissions and contrails using numerous measurement instruments, some of which were installed by NASA and DLR. The joint research campaign took place under the name ND-MAX/ECLIF 2 (NASA/DLR-Multidisciplinary Airborne eXperiments/Emission and CLimate Impact of alternative Fuel) together with partners from FAA, NRC, Aerodyne, Missouri S and T, Boeing, the Max Planck Institute for Chemistry and the Universities of Mainz, Innsbruck and Oslo.

"In our work, we look at more than just individual technologies - always at aircraft and air transport as an overall system. This gives DLR systems-level expertise in aeronautics," emphasises Anke Kaysser-Pyzalla, Chair of the DLR Executive Board. "We see ourselves acting in the role of an architect for aeronautics research - from fundamental investigations to applications, in close coordination and cooperation with international research partners, the aircraft sector and industry. In this way, we are making our contribution to the Green Deal in the air transport sector."

Sustainable aviation fuels
Sustainable fuels are obtained from renewable sources without using petroleum-based hydrocarbons and have a lower carbon footprint than fossil kerosene. Fuels based on plants or waste are conceivable here, but also, in the near future, e-fuels synthesised using renewable energy sources and sustainably obtained 'green' hydrogen.

"What all these sustainable fuels have in common is that they can be produced without cyclic hydrocarbons, referred to as 'aromatics'," explains Patrick Le Clercq, ECLIF project manager at the DLR Institute of Combustion Technology in Stuttgart. "Fewer aromatics in the fuel means less soot in the emissions and therefore fewer ice crystals in the contrails. Thus, sustainable fuels reduce the two biggest climate-warming effects of air transport - contrails and the carbon footprint."

Soot, ice crystals, contrails
Aircraft engines emit soot particles. These act as condensation nuclei for small, supercooled water droplets, which immediately freeze to form ice crystals and become visible as contrails in the sky. The ice crystals in the contrails can persist for several hours in cold, humid conditions at altitudes of approximately eight to 12 kilometres, forming high clouds referred to as contrail cirrus.

These clouds can have a localised warming or cooling effect, depending on the position of the Sun and the nature of the underlying surface. Research has shown that the warming effect predominates globally. The occurrence of these clouds is extremely variable in time and space, so that a few contrail hotspots are responsible for a large part of the warming effect.

Contrails and the resulting contrail cirrus clouds only remain in the sky for a few hours. Once the number of ice crystals is reduced, their warming effect is promptly dissipated. This makes the targeted use of sustainable fuels on flight routes with frequent contrail formation particularly attractive for achieving a rapid effect for climate protection. Avoiding in addition carbon dioxide emissions from fossil fuels brings important long-term benefits, because carbon dioxide remains in the atmosphere for more than 100 years and drives global warming.

"With Sustainable Aviation Fuels (SAFs), we have a bridging technology on the way to emission-free air transport," explains Markus Fischer, Deputy Board Member Aeronautics. "In the joint flights with NASA and their evaluation, we have contributed DLR's scientific and technical expertise in the field of alternative fuels, combustion technologies and the climate impact of air transport. This has been done in close partnership with industry."

Next step - flying with 100 percent sustainable fuel
Following the promising results achieved using 50-50 blends of kerosene and sustainable fuel, researchers are now looking forward to examining how flights with pure SAF will affect emissions and contrails. To this end, joint flight tests were recently conducted by Airbus, Rolls-Royce, DLR and other partners. As part of the ECLIF3 project, an Airbus A350-900 flew using only the sustainable aviation fuel HEFA and was followed by DLR's Falcon 20-E research aircraft. Data from the flights is currently being analysed. Further test flights are planned for autumn 2021.

Research paper


Related Links
ND-MAX/ECLIF 2
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
World-first discovery could fuel the new green ammonia economy
Melbourne, Australia (SPX) Jun 11, 2021
In a world-first, Monash University scientists have developed a new, environmentally friendly process that could drive the future production of green ammonia. Ammonia (NH3) is a globally important commodity for fertiliser production to help sustain food production. It is currently produced via a metal catalysed reaction between nitrogen gas and hydrogen from natural gas, using an established technology known as the Haber-Bosch process. The production of each metric tonne of ammonia contribut ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Significantly lower climate impact of contrails when using sustainable fuels

Recycling robot could help solve soft plastic waste crisis

Sweet promise for the environment

Transforming CO2 and sugars into biofuel

BIO FUEL
A more robust memory device for AI systems

The new wave of robotic automation

European Robotic Arm enters service on the ISS

Humans are ready to take advantage of benevolent AI

BIO FUEL
US to open California coast to wind power

US approves its biggest offshore wind farm yet

Vertical turbines could be the future for wind farms

Researchers working to further develop monopile production for offshore wind farms

BIO FUEL
Audi to stop making fossil fuel cars by 2033: CEO

E-scooters as a new micro-mobility service

Europe powers up electric car battery drive

Waymo raises $2.5 bn to rev self-driving cars

BIO FUEL
Proliferation of electric vehicles based on high-performance, low-cost sodium-ion battery

Exotic superconductors: The secret that wasn't there

Electric heat pumps use much less energy than furnaces, and can cool houses too

Highview Enlasa developing liquid air energy storage facility in Chile

BIO FUEL
Iraq hopes to build 8 nuclear power reactors by 2030

France reaches deal to return nuclear waste to Germany

Iran's Bushehr nuclear plant shut down for apparent maintenance

Manchester launches Advanced Nuclear Energy roadmap

BIO FUEL
IMF urges top polluters to adopt carbon price floor

Bank of Japan announces first green investment fund

Singapore exchange aims to boost tainted carbon markets

UK not adapting fast enough to climate risks: experts

BIO FUEL
Passive rewilding can rapidly expand UK woodland at no cost

Commercial forests could produce long-term climate benefit

On the front line in Ivory Coast's reforestation war

Forest degradation primary driver of carbon loss in the Brazilian Amazon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.