Solar Energy News  
SOLAR DAILY
Silicon-based, tandem photovoltaic modules can compete in solar market
by Staff Writers
Tempe AZ (SPX) Aug 03, 2018

File image of semiconductor nanoparticles

New solar energy research from Arizona State University demonstrates that silicon-based, tandem photovoltaic modules, which convert sunlight to electricity with higher efficiency than present modules, will become increasingly attractive in the U.S.

A paper that explores the costs vs. enhanced efficiency of a new solar technology, titled "Techno-economic viability of silicon-based, tandem photovoltaic modules in the United States," appears in Nature Energy this week. The paper is authored by ASU Fulton Schools of Engineering, Assistant Research Professor Zhengshan J. Yu , Graduate Student Joe V. Carpenter and Assistant Professor Zachary Holman.

The Department of Energy's SunShot Initiative was launched in 2011 with a goal of making solar cost-competitive with conventional energy sources by 2020. The program attained its goal of $0.06 per kilowatt-hour three years early and a new target of $0.03 per kilowatt-hour by 2030 has been set.

Increasing the efficiency of photovoltaic modules is one route to reducing the cost of the solar electricity to this new target. If reached, the goal is expected to triple the amount of solar installed in the U.S. in 2030 compared to the business-as-usual scenario.

But according to Holman, "the dominant existing technology - silicon - is more than 90 percent of the way to its theoretical efficiency limit," precipitating a need to explore new technologies. More efficient technologies will undoubtedly be more expensive, however, which prompted Holman and co-authors to ask, "does a doubling of module efficiency warrant a doubling of cost?"

Tandem modules stack two, complementary photovoltaic materials - for instance, a perovskite solar cell atop a silicon solar cell - to best use the full spectrum of colors emitted by the sun and exceed the efficiency of either constituent solar cell on its own. The study was designed to determine how much more expensive high-efficiency tandem photovoltaic modules can be and still compete in the evolving solar marketplace.

Results indicate that in the expected 2020 U.S. residential solar market, 32-percent-efficient anticipated tandem modules can cost more than three times that of projected 22-percent-efficient silicon modules and still produce electricity at the same cost. This premium, however, is a best-case scenario that assumes the energy yield, degradation rate, service life and financing terms of tandem modules are similar to those of silicon modules alone. The study also acknowledges that cost premium values will vary according to region.

"Our previous study defines the technological landscape of tandems; this study paints the economic landscape for these future solar technologies that are only now being created in labs. It tells researchers how much money they're allowed to spend in realizing the efficiency enhancements expected from tandems," says Yu.

Research paper


Related Links
Arizona State University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Researchers upgrade organic solar cells to be used in roof tiles generating power
Moscow, Russia (SPX) Aug 02, 2018
An international team of materials scientists from France, Russia and Kazakhstan found a way to boost the efficiency of organic solar cells several times. The new study, published in the Journal of Materials Chemistry A, has shown that ordered structures based on organic molecules can be used to produce solar power. Solar panels, or batteries, are one of the most promising ways to generate electrical power. As of 2017, the combined power of solar panels installed worldwide amounted to 400 gigawatt ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Soil bugs munch on plastics

Team shatters theoretical limit on bio-hydrogen production

Hydrogen and plastic production offer new catalyst with a dual function

Feeding plants to this algae could fuel your car

SOLAR DAILY
Optical fibers that can feel the materials around them

US Army selects Lockheed Martin as integrated systems developer for autonomous convoy program

Cell-sized robots can sense their environment

If only AI had a brain

SOLAR DAILY
Searching for wind for the future

Clock starts for Germany's next wind farm

ENGIE: Wind energy footprint firmed up in Norway

Batteries make offshore wind energy debut

SOLAR DAILY
Uber hits brakes on self-driving trucks

ULEMCo hydrogen dual-fuel vehicle makes cleaner deliveries for Ocado

EU carmakers 'inflating' emissions to skew carbon targets

Uber resumes testing for autonomous cars in 'manual mode'

SOLAR DAILY
New class of materials could be used to make batteries that charge faster

3D printing the next generation of batteries

Liquid microscopy technique reveals new problem with lithium-oxygen batteries

Gold nanoparticles to find applications in hydrogen economy

SOLAR DAILY
Framatome becomes main distributor of Chesterton valve packing and seals for the nuclear energy industry

SUSI submarine robot enables successful visual Inspection at Asco Nuclear Power Plant

EDF sees new delay, cost overruns for nuclear reactor

First Ukraine nuclear reactor loaded 'solely' with non-Russian fuel

SOLAR DAILY
Electricity crisis leaves Iraqis gasping for cool air

Germany thwarts China by taking stake in 50Hertz power firm

Global quadrupling of cooling appliances to 14 billion by 2050

Equinor buys short-term electricity trader

SOLAR DAILY
Tropical forests may soon hinder, not help, climate change effort

Fires spark biodiversity criticism of Sweden's forest industry

Behold the Amazonian eco-warrior drag queen

Tropical forests could soon accelerate, not slow, global warming









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.