Solar Energy News  
TIME AND SPACE
Simple experiment explains magnetic resonance
by Staff Writers
Riverside CA (SPX) Dec 09, 2019

Image shows oscillations of the compass needle in the field of a refrigerator magnet.

Physicists at University of California, Riverside, have designed an experiment to explain the concept of magnetic resonance. The project was carried out by undergraduate students in collaboration with local high school teachers.

A versatile technique employed in chemistry, physics, and materials research, magnetic resonance describes a resonant excitation of electron or atomic nuclei spins residing in a magnetic field by means of electromagnetic waves. Magnetic resonance also provides the basis for magnetic resonance imaging, or MRI - the central noninvasive tool in diagnostic medicine and medical research.

"Two of my undergraduate students developed the demonstration experiment based on a compass, an object everybody can relate to," said Igor Barsukov, an assistant professor in the UC Riverside Department of Physics and Astronomy, who supervised the project.

Barsukov explained the compass is placed in the middle of a wire coil that is fed with a small alternating voltage. A refrigerator magnet in the vicinity of the compass aligns its needle. When the fridge magnet is brought closer to the compass, the needle starts to oscillate at a "sweet spot." When the magnet is moved away from the sweet spot, the oscillation stops. This oscillation corresponds to magnetic resonance of the compass needle in the magnetic field of the fridge magnet.

"During outreach events for the broader public, people often share with us their concerns about MRI procedures they need to undergo in a hospital," Barsukov said. "They associate it with radiation. We wanted to design a hands-on, table-top experiment to alleviate their concerns and to provide a visual explanation for the underlying physics."

Barsukov's team initiated a collaboration with the Physics Teacher Academy, a UCR-based program providing training for local high school teachers, to ensure it is also suitable for a high-school classroom.

"Close interaction with the teachers changed our perspective on what a good demonstration experiment aimed at improving scientific literacy should be," Barsukov said. "We decided to employ 3D-printing techniques for the experimental setup and smartphone-based voltage generators. It reduces the time burden for instructors and makes the presentation more accessible and appealing to students."

The project was recently published in The Physics Teacher and presented in early November 2019 in the educational section of Magnetism and Magnetic Materials, a major conference in magnetism research.

"The project turned out to be truly synergistic," Barsukov said. "We learned a lot from the high school teachers we worked with and were able to design an exciting tool for outreach, which I can also use in my classes at UCR. Working on this project was a great lab experience for my students."

Research paper


Related Links
University of California - Riverside
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Ultracold chemistry transforms observing chemical reactions
Boston MA (SPX) Nov 30, 2019
The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that painstakingly organized chaos, in temperatures millions of times colder than interstellar space, Kang-Kuen Ni achieved a feat of precision. Forcing two ultracold molecules to meet and react, she broke and formed the coldest bonds in the history of molecular couplings. "Probably in the next couple of years, we are the only lab that can do this," sa ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Sustaining roads with grape and agricultural waste

Green palm oil push: Kit Kat, Dove makers could face fines

Scientists clarify light harvesting in green algae

Leftover grain from breweries could be converted into fuel for homes

TIME AND SPACE
UK online supermarket Ocado strikes AI deal in Japan

An astronaut controls a rover on Earth

Scientists help soldiers figure out what robots know

U.S. Army chooses FLIR's Kobra heavy robot vehicle

TIME AND SPACE
Saving bats from wind turbine death

DTEK reaches 1 GW of renewable energy generation capacity in Ukraine

Global winds reverse decades of slowing and pick up speed

Superconducting wind turbine chalks up first test success

TIME AND SPACE
Activists sabotage 'ecologically catastrophic' e-scooters in France

China to target quarter of vehicle sales to be electric by 2025

Mass English lawsuit over VW 'dieselgate' reaches court

BMW to build electric Mini in China

TIME AND SPACE
New device enables battery-free computer input at the tip of your finger

Study sheds light on the peculiar 'normal' phase of high-temperature superconductors

The impact of molecular rotation on a peculiar isotope effect on water hydrogen bonds

New membrane technology to boost water purification and energy storage

TIME AND SPACE
At 50, Europe's oldest nuclear plant not ready to retire

GE Hitachi Nuclear Energy awarded contract to support decommissioning of Pilgrim Nuclear Power Station

New broom at UN nuclear watchdog as Iran tensions rise

Russian Greenpeace protests against depleted uranium cargo

TIME AND SPACE
EU to miss 2020 green goals: agency

Insurer Axa plans total carbon divestment by 2040

Carbon markets: looming climate showdown?

Canada needs much higher carbon tax to meet climate target: study

TIME AND SPACE
Four get 50-year terms in Honduras for activist murder

Drogba kicks off 'million trees' project in Ivory Coast

Deforestation in Brazil's Amazon highest since 2008: official

Paying countries not to chop down forests works, study shows









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.