Solar Energy News  
CARBON WORLDS
Simulations identify missing link to determine carbon in deep Earth reservoirs
by Staff Writers
Chicago IL (SPX) Feb 14, 2020

.

Understanding the Earth's carbon cycle has important implications for understanding climate change and the health of biospheres.

But scientists don't yet understand how much carbon lies deep in the Earth's water reservoirs - for example, in water that is under extreme pressure in the mantle - because experiments are difficult to conduct under such conditions.

Researchers at the Pritzker School of Molecular Engineering (PME) at the University of Chicago and the University of Science and Technology in Hong-Kong have created a complex computer simulation that will help scientists determine the concentration of carbon under the conditions of the mantle, which include temperatures of up to 1000K and pressures of up to 10 GPa, which is 100,000 times greater than on the Earth's surface.

These simulations provide an ingenious way to evaluate University Of Chicago
between measurements (in particular, vibrational spectra used to discover signatures of ions in water) and the ion and molecular concentrations in these conditions. This research, which was published recently in the journal Nature Communications, has important implications in understanding the Earth's carbon cycle.

"Our computational strategy will greatly facilitate the determination of the amount of carbon at the extreme conditions of the Earth's mantle," said Giulia Galli, the Liew Family Professor of Molecular Engineering and professor of chemistry at UChicago, who is also a senior scientist at Argonne National Laboratory and one of the authors of the research.

"Together with many other research groups around the world, we have been part of a large project aimed at understanding how much carbon is present in the Earth and how it moves from the interior toward the surface," said Ding Pan, former post-doctoral researcher at UChicago in Galli's group, first author of the research, and current assistant professor of physics and chemistry in Hong-Kong University of Science and Technology. "This is one step toward building a comprehensive picture of carbon concentration and movement in the earth."

A step toward better understanding the carbon cycle
Understanding how much carbon lies in deep reservoirs many miles underground is important because it is estimated that more than 90 percent of the Earth's carbon is buried in its interior. That deep carbon influences the form and concentration of carbon near the surface, which ultimately can impact global climate change.

Unfortunately, there is no experimental technique yet available to directly characterize carbonates dissolved in water at extreme pressure and temperature conditions. Pan and Galli devised a novel strategy that combines spectroscopy results with sophisticated calculations based on quantum mechanics to determine the concentration of ions and molecules in water at extreme conditions.

By carrying out these simulations, Pan and Galli found that the concentration of a specific important species - bicarbonate ions - has been underestimated by previously used geochemical models. They proposed a new view of what happens when you dissolve carbon dioxide in water at extreme conditions.

"The determination of what happens when one dissolves carbon dioxide in water under pressure is critical to the understanding of the chemistry of carbon in the Earth's interior," Galli said. "Our study contributes to the understanding of the deep carbon cycle, which substantially influences the carbon budget near the Earth's surface."

Galli and Pan's simulation were performed at the Research Computing Center at UChicago and at the Deep Carbon Observatory Computer Cluster. It is just one of the several investigations of ions in water and water at interfaces ongoing in Galli's group.

General simulation tools to understand water
Gaining a deeper understanding of what takes place when water - and matter dissolved or suspended in water - comes into contact with those solids is the focus of the Argonne-led AMEWS Center. For example, in many water systems, a phenomenon known as fouling - the accumulation of unwanted material on solid surfaces to the detriment of function - occurs at interfaces.

"A huge number of the challenges we face surrounding water center on the interface between water and the materials that make up the systems that handle, process, and treat water, including ions, of course," said Seth Darling, director of AMEWS and a PME fellow. "The quantum mechanical simulations of Galli, integrated with experiments, can make a real difference in understanding aqueous interfacial phenomena where ions, like the carbonates studied in Nature Communications, are present."

Research Report: A first principles method to determine speciation of carbonates in supercritical water


Related Links
University Of Chicago
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
'Reverse fuel cell' converts waste carbon to valuable products at record rates
Toronto, Canada (SPX) Feb 11, 2020
Fuel cells turn chemicals into electricity. Now, a University of Toronto Engineering team has adapted technology from fuel cells to do the reverse: harness electricity to make valuable chemicals from waste carbon (CO2). "For decades, talented researchers have been developing systems that convert electricity into hydrogen and back again," says Professor Ted Sargent, one of the senior authors of the paper published in Science. "Our innovation builds on that legacy, but by using carbon-based molecule ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Drilling a 3,000 meters deep well

Water-conducting membrane allows carbon dioxide to transform into fuel more efficiently

Vast amounts of valuable energy, nutrients, water lost in world's fast-rising wastewater streams

UCF researchers work on project to develop cleaner-burning, renewable fuels

CARBON WORLDS
SubT Challenge Seeks Information to Enhance Virtual Competition

NASA contracts Maxar to supply robotic arm for lunar lander

Northrop Grumman Remotec and Kinova Robotics sign distribution agreement for robotic manipulator

NASA funds demonstration of assembly and manufacturing in space

CARBON WORLDS
Iberdrola will build its next wind farm in Spain with the most powerful wind turbine

UK looks to offshore wind for green energy transition

Britain's green energy sector brightens: survey data

Consider marine life when implementing offshore renewable power

CARBON WORLDS
BMW aims to slash CO2 output by 20% in 2020

Volvo Cars and Chinese owner Geely plan to merge

GM Korea to suspend assembly line as virus hits parts supply

Toyota extends China plant closure over virus

CARBON WORLDS
Smoke, soot and sweat: Egypt's charcoal workers

Scientists learn more about the first hours of a lithium-ion battery's life

Quantum technologies: New insights into superconducting processes

Researchers virtually 'unwind' lithium battery for the first time

CARBON WORLDS
GE Hitachi Nuclear Energy and CEZ signs small modular reactor tech deal with Czech Republic

Framatome signs contracts with Tennessee Valley Authority

GE Hitachi Nuclear Energy begins NRC licensing process for BWRX-300 Small Modular Reactor

Molecule modification could improve reprocessing of spent nuclear fuel

CARBON WORLDS
Carbon emissions from energy 'flat' in 2019: IEA

Model shows how to make on-farm sustainable energy projects profitable

EU chief pleads to save green deal in budget holed by Brexit

Eastern EU states opposed to 2050 zero-emissions goal

CARBON WORLDS
EU Commission warns Romania over illegal logging

Secondary forests provide deforestation buffer for old-growth primary forests

French lenders bankroll firms linked to deforestation: analysis

Pope voices 'outrage' over Amazon exploitation









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.