Solar Energy News  
STELLAR CHEMISTRY
Single photons from a silicon chip
by Staff Writers
Dresden (SPX) Sep 16, 2020

Schematic representation of a single defect in a silicon wafer created by the implantation of carbon atoms, which emits single photons in the telecom O-band (wavelength range: 1260 to 1360 nanometers) coupled to an optical fiber.

Quantum technology holds great promise: Just a few years from now, quantum computers are expected to revolutionize database searches, AI systems, and computational simulations. Today already, quantum cryptography can guarantee absolutely secure data transfer, albeit with limitations.

The greatest possible compatibility with our current silicon-based electronics will be a key advantage. And that is precisely where physicists from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and TU Dresden have made remarkable progress: The team has designed a silicon-based light source to generate single photons that propagate well in glass fibers.

Quantum technology relies on the ability to control the behavior of quantum particles as precisely as possible, for example by locking individual atoms in magnetic traps or by sending individual light particles - called photons - through glass fibers.

The latter is the basis of quantum cryptography, a communication method that is, in principle, tap-proof: Any would-be data thief intercepting the photons unavoidably destroys their quantum properties. The senders and receivers of the message will notice that and can stop the compromised transmission in time.

This requires light sources that deliver single photons. Such systems already exist, especially based on diamonds, but they have one flaw: "These diamond sources can only generate photons at frequencies that are not suitable for fiber optic transmission," explains HZDR physicist Dr. Georgy Astakhov.

"Which is a significant limitation for practical use." So Astakhov and his team decided to use a different material - the tried and tested electronic base material silicon.

100,000 single photons per second
To make the material generate the infrared photons required for fiber optic communication, the experts subjected it to a special treatment, selectively shooting carbon into the silicon with an accelerator at the HZDR Ion Beam Center. This created what is called G-centers in the material - two adjacent carbon atoms coupled to a silicon atom forming a sort of artificial atom.

When radiated with red laser light, this artificial atom emits the desired infrared photons at a wavelength of 1.3 micrometers, a frequency excellently suited for fiber optic transmission. "Our prototype can produce 100,000 single photons per second," Astakhov reports.

"And it is stable. Even after several days of continuous operation, we haven't observed any deterioration." However, the system only works in extremely cold conditions - the physicists use liquid helium to cool it down to a temperature of minus 268 degrees Celsius.

"We were able to show for the first time that a silicon-based single-photon source is possible," Astakhov's colleague Dr. Yonder Berencen is happy to report. "This basically makes it possible to integrate such sources with other optical components on a chip."

Among other things, it would be of interest to couple the new light source with a resonator to solve the problem that infrared photons largely emerge from the source randomly. For use in quantum communication, however, it would be necessary to generate photons on demand.

Light source on a chip
This resonator could be tuned to exactly hit the wavelength of the light source, which would make it possible to increase the number of generated photons to the point that they are available at any given time. "It has already been proven that such resonators can be built in silicon," reports Berencen. "The missing link was a silicon-based source for single photons. And that's exactly what we've now been able to create."

But before they can consider practical applications, the HZDR researchers still have to solve some problems - such as a more systematic production of the new telecom single-photon sources. "We will try to implant the carbon into silicon with greater precision," explains Georgy Astakhov. "HZDR with its Ion Beam Center provides an ideal infrastructure for realizing ideas like this."

Research Report: "Isolation of telecom single-photon emitters in silicon for scalable quantum photonics"


Related Links
Helmholtz-Zentrum Dresden-Rossendorf
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Scientists use photons as threads to weave novel forms of matter
Southampton UK (SPX) Aug 18, 2020
New research from the University of Southampton has successful discovered a way to bind two negatively charged electron-like particles which could create opportunities to form novel materials for use in new technological developments. Positive and negative electric charges attract each other, forming atoms, molecules, and all that we usually refer as matter. However, negative charges repel each other, and in order to form atom-like bound objects some extra glue is needed to compensate this electro ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Cascades with carbon dioxide

Chemistry's Feng Lin Lab is splitting water molecules for a renewable energy future

Making more of methane

Can sunlight convert emissions into useful materials?

STELLAR CHEMISTRY
DoD to start live fighter trials with AI pilots by 2024, Esper says

Light processing improves robotic sensing, study finds

Miniature antenna enables robotic teaming in complex environments

Pentagon picks Google Cloud for AI-assisted cancer diagnoses

STELLAR CHEMISTRY
Offshore wind power now so cheap it could pay money back to consumers

Trust me if you can

Ingeteam's advanced simulation models to ease wind power grid integration

Magnora ASA and Kustvind AB accelerate development of 500 MW offshore wind project in southern Sweden

STELLAR CHEMISTRY
Is zero-emission truck maker Nikola the new Tesla, or just hot air?

Uber says will be 'zero emissions' by 2040

General Motors to take stake in Nikola electric truck company

Demand for new cars falls in Germany as virus cases rebound

STELLAR CHEMISTRY
Boundaries no barrier for thermoelectricity

Predicting the slow death of lithium-ion batteries

Lightweight green supercapacitors could charge devices in a jiffy

Researchers find unexpected electrical current that could stabilize fusion reactions

STELLAR CHEMISTRY
Iran says 1,044 centrifuges active at underground plant

Framatome partners with ADAGOS to bring artificial intelligence to the nuclear energy industry

Framatome signs contract to provide field instrumentation to Hinkley Point C

US versatile test reactor program chooses Bechtel-led team

STELLAR CHEMISTRY
CEOs call for deep EU emission cuts by 2030

Intelligent software for district renewable energy management

Germany's first 'green' bonds attract strong demand

Mining for renewable energy may pose 'biodiversity threat'

STELLAR CHEMISTRY
CO2 makes trees live fast and die young: study

Brazil funding flip-flop triggers alarm; Protesters end roadblock

Toronto seeks to save oak tree older than Canada

Brazil military plane flew illegal Amazon miners: prosecutors









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.