Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Smooth sailing: Rough surfaces that can reduce drag
by Staff Writers
Washington DC (SPX) Jan 23, 2014


File image.

From the sleek hulls of racing yachts to Michael Phelps' shaved legs, most objects that move through the water quickly are also smooth. But researchers from UCLA have found that bumpiness can sometimes be better.

"A properly designed rough surface, contrary to our intuition, can reduce skin-friction drag," said John Kim, a professor in the mechanical and aerospace engineering department at UCLA. Kim and his colleagues modeled the fluid flow between two surfaces covered with tiny ridges.

They found that even in turbulent conditions the rough surface reduced the drag created by the friction of flowing water. The researchers report their findings in the journal Physics of Fluids.

The idea of using a rough surface for reduced drag had been explored before, but resulted in limited success. More recently scientists have begun experimenting with rough surfaces that are also extremely difficult to wet, a property called superhydrophobicity. In theory this means that the surfaces can trap air bubbles, creating a hydrodynamic cushion, but in practice they often lose their air cushions in chaotic flows.

The UCLA team chose to model a superhydrophobic surface design that another group of researchers at UCLA had already observed could keep air pockets entrapped, even in turbulent conditions. The surface was covered with small ridges aligned in the direction of flow.

The researchers modeled both laminar and turbulent flows, and unexpectedly found that the drag-reduction was larger in turbulent conditions. The irregular fluctuations and swirling vortices in turbulent flows on smooth surfaces generally increase drag, Kim explained.

However, the air cushion created by the superhydrophobic ridges altered the turbulent patterns near the surface, reducing their effect, he said.

The team expects insights gleaned from their numerical simulations to help further refine the design of rough, drag-reducing surfaces. Further down the line, such surfaces might cover the undersides of cargo vessels and passenger ships. "It could lead to significant energy savings and reduction of greenhouse gas emissions," Kim said.

The paper, "A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow," authored by Hyunwook Park, Hyungmin Park, and John Kim, appears in the journal Physics of Fluids.

.


Related Links
American Institute of Physics
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
What makes superalloys super - hierarchical microstructure of a superalloy
Berlin, Germany (SPX) Jan 21, 2014
Researchers have observed for the first time in detail how a hierarchical microstructure develops during heat treatment of a superalloy Materials in high-performance turbines have to withstand not only powerful mechanical forces, they also have to maintain their chemical and mechanical properties almost up to their melting points. For this reason, turbine manufacturers have employed specia ... read more


TECH SPACE
Boeing Joins BIOjet Team To Develop Biofuel Supply Chain In UAE

Renewable chemical ready for biofuels scale-up

UAE's Etihad demonstrates flight with biofuel mix

Boeing Finds Significant Potential in "Green Diesel" as a Sustainable Jet Fuel

TECH SPACE
From Crime Fighting to Methane Lakes: Designing Robots for Earth and Space

Soft, flexible robotic device aimed at helping foot/ankle problems

BYU's smart object recognition algorithm doesn't need humans

Silver Nanowire Sensors Hold Promise for Prosthetics, Robotics

TECH SPACE
France's Areva, Spain's Gamesa announce joint wind power venture

Musselroe Wind Farm provides fresh energy for local economy

Maine offshore wind project appears on track for federal funding

No Evidence of Residential Property Impacts Near Wind Turbines

TECH SPACE
Peugeot shares plunge on Chinese, French investment plans

Peugeot 'approves' capital hikes by French state, Chinese partner

Hybrid cars fail to ease Pakistan's gas woes

Peugeot board to examine Chinese capital boost plans

TECH SPACE
EU issues framework for shale gas exploitation

Oil prices drop on China data

Shell to further scale down Australian operations?

Iran's oil minister to seek investment at Davos

TECH SPACE
Westinghouse To Build Three AP1000 Nuclear Reactors In UK With Nugen

Japan's Tepco to restart nuclear reactors?

India and South Korea to cooperate on nuclear power?

Japan approves TEPCO business plan to switch on reactors

TECH SPACE
Europe's 2030 climate targets get mixed reception

EU could cut emissions by 40 percent at moderate cost

The German energy turnaround - implications for Russia

Global warming's biggest offenders

TECH SPACE
Trees grow faster and store more carbon as they age

Image or reality? Leaf study needs photos and lab analysis

Meet the rainforest "diversity police"

Large, older trees keep growing at a faster rate




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement