Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Snake scales protect steel against friction
by Staff Writers
Karlsruher, Germany (SPX) Aug 19, 2015


This image shows vertically and horizontally overlapping scale structures. Image courtesy Interferometer images: Christian Greiner, KIT. For a larger version of this image please go here.

"Friction and wear are two of the biggest challenges in systems of several individual components," Christian Greiner of the Institute for Applied Materials says. A solution is found in nature: Snakes, such as the ball python, or lizards, such as the sandfish skink, use friction to move forwards, but can reduce it to a minimum thanks to their scales.

Together with Michael Schafer, Greiner developed a process to transfer the scale structure of reptiles to components of electromechanical systems: With a fiber laser, they milled scales into a steel bolt of 8 mm in diameter.

Wih the help of two different structures, the materials researchers tested whether the distance of the scales influences friction behavior. In the first structure, the scales overlap and are located very closely to each other, such as the scales on the belly of a ball python. The second structure consists of scales arranged in vertical rows at a larger distance, such as the skin of a sandfish skink.

"The distance between the rows in our experiment was the smallest possible distance we could produce with the laser. The structure, hence, does not entirely correspond to that of the sandfish skink," Greiner says. In the future, however, the researchers plan to produce structures that are closer to the original in nature.

Every scale is 5 um high and has a lateral dimension of 50 um (10-6 meters). This corresponds to about the diameter of a hair. In nature, the scales of a snake are about 300 to 600 nm (10-9 meters) in size. The scales of a sandfish have a size of 2 x 3 mm (10-3 meters). Hence, the size of the lasered scales does not correspond to that of the reptile scales.

However, another project of the KIT scientists revealed that the change of the size does not necessarily lead to the artificial structure being less effective than the natural one: To simulate the "adhesive" and self-cleaning properties of gecko feet, the researchers used elastic microhairs that were up to 100 times bigger than those of the animals, but had the same adhesive power.

To find out whether scales reduce friction, Greiner and Schafer fixed the structured surface of the bolts to a rotating plate. The experiments were carried out without and with a lubricant (1 ml of mineral oil). For the experiments with oil as lubricant, the scientists used steel disks. Under dry sliding conditions, sapphire disks were applied. The disk diameter was 50 mm.

Experiments under lubricated conditions revealed that both narrow and wide arrangements of the scales increase friction compared to the unstructured bolt: By the wide scales, friction is increased by a factor of 1.6. The narrow scales increase friction by a factor of 3. In the non-lubricated state, the wide scale structure reduced friction by more than 40 percent, while friction was reduced by 22 percent in case of a narrow scale structure.

The finding that the narrow scale structure increases friction under both lubricated and non-lubricated conditions had not been expected by the researchers: "We assumed that the narrow structure is more effective, as it is closer to nature," Greiner says.

They succeeded in excluding that the smaller friction was caused by a surface modification due to the laser: "On and between the scales, the material was softer than the untreated material. Only the edges cut by the laser were harder and they had no contact with the rotating disk. Hence, we concluded that the scales reduce friction," Greiner says.

Now, the materials researchers plan to test how friction of the bolt is changed when the size of the scales is varied or harder material is used.

A detailed description of the project can be found here; "Bio-inspired scale-like surface textures and their tribological properties" by Christian Greiner and Michael Schafer in "Bioinspiration and Biomimetics"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Karlsruher Institut fur Technologie
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Surprising discoveries about 2-D molybdenum disulfide
Berkeley CA (SPX) Aug 18, 2015
Scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have used a unique nano-optical probe to study the effects of illumination on two-dimensional semiconductors at the molecular level. Working at the Molecular Foundry, a DOE Office of Science User Facility, the scientific team used the "Campanile" probe they developed to make some surp ... read more


TECH SPACE
BESC creates microbe that bolsters isobutanol production

Biochemist studies oilseed plants for biofuel, industrial development

Genes of a common pond algae reveal great potential

Turning cow poo into power is profitable for US farm

TECH SPACE
Controlling the uncontrollable

MIT engineers build, test bartending robots that work together

IBM acquires medical imaging firm to help Watson 'see'

Giving robots a more nimble grasp

TECH SPACE
New technology could reduce wind energy costs

Study finds price of wind energy in US at an all-time low

U.S. claims No. 2 position in global wind power

Impax Asset Management: fund sells French wind farm

TECH SPACE
Toyota says workers injured, factory lines shut in Tianjin

China auto sales decline in July: industry group

Drivers challenge Uber business model in California

Tesla courts hackers to defend high-tech cars

TECH SPACE
Drexel engineers 'sandwich' atomic layers to make new materials for energy storage

Reducing human health impacts from power statons

Two spin liquids square off in an iron-based superconductor

'Yolks' and 'shells' improve rechargeable batteries

TECH SPACE
Fifth Belgian reactor shuts down but no danger: operator

A small, modular, efficient fusion plant

What is the importance of nuclear power in Japan?

Japan ends nuclear shutdown sparked by Fukushima crisis

TECH SPACE
Fifteen US states try to block Obama clean power plan

Earth's 2015 quota of renewable resources used up: NGO

Australia PM Abbott defends emissions target

New Zealand puts bets on diverse energy mix

TECH SPACE
Can cloud forests survive climate change?

NASA Goddard Technology Helps Fight Forest Pests

Agrarian settlements drive severe tropical deforestation across the Amazon

Myanmar amnesty frees Chinese loggers, political prisoners




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.