Solar Energy News  
Solar Variability And Climate Change

The sun goes through roughly an 11-year cycle of activity, from stormy to quiet and back again. Solar activity often occurs near sunspots, dark regions on the sun caused by concentrated magnetic fields. The solar irradiance measurement is much higher during solar maximum, when sunspot cycle and solar activity is high, versus solar minimum, when the sun is quiet and there are usually no sunspots.
by Staff Writers
Pasadena CA (JPL) May 08, 2008
The sun has powered almost everything on Earth since life began, including its climate. The sun also delivers an annual and seasonal impact, changing the character of each hemisphere as Earth's orientation shifts through the year. Since the Industrial Revolution, however, new forces have begun to exert significant influence on Earth's climate.

"For the last 20 to 30 years, we believe greenhouse gases have been the dominant influence on recent climate change," said Robert Cahalan, climatologist at NASA's Goddard Space Flight Center in Greenbelt, Md.

For the past three decades NASA scientists have investigated the unique relationship between the sun and Earth. Using space-based tools, like the Solar Radiation and Climate Experiment (SORCE), they have studied how much solar energy illuminates Earth, and explored what happens to that energy once it penetrates the atmosphere.

The amount of energy that reaches Earth's outer atmosphere is called the total solar irradiance. Total solar irradiance is variable over many different timescales, ranging from seconds to centuries due to changes in solar activity.

The sun goes through roughly an 11-year cycle of activity, from stormy to quiet and back again. Solar activity often occurs near sunspots, dark regions on the sun caused by concentrated magnetic fields. The solar irradiance measurement is much higher during solar maximum, when sunspot cycle and solar activity is high, versus solar minimum, when the sun is quiet and there are usually no sunspots.

"The fluctuations in the solar cycle impacts Earth's global temperature by about 0.1 degree Celsius, slightly hotter during solar maximum and cooler during solar minimum," said Thomas Woods, solar scientist at the University of Colorado in Boulder. "The sun is currently at its minimum, and the next solar maximum is expected in 2012."

Using SORCE, scientists have learned that about 1,361 watts per square meter of solar energy reaches Earth's outermost atmosphere during the sun's quietest period. But when the sun is active, 1.3 watts per square meter (0.1 percent) more energy reaches Earth. "This TSI measurement is very important to climate models that are trying to assess Earth-based forces on climate change," said Cahalan.

Over the past century, Earth's average temperature has increased by approximately 0.6 degrees Celsius (1.1 degrees Fahrenheit). Solar heating accounts for about 0.15 C, or 25 percent, of this change, according to computer modeling results published by NASA Goddard Institute for Space Studies researcher David Rind in 2004. Earth's climate depends on the delicate balance between incoming solar radiation, outgoing thermal radiation and the composition of Earth's atmosphere.

Even small changes in these parameters can affect climate. Around 30 percent of the solar energy that strikes Earth is reflected back into space. Clouds, atmospheric aerosols, snow, ice, sand, ocean surface and even rooftops play a role in deflecting the incoming rays. The remaining 70 percent of solar energy is absorbed by land, ocean, and atmosphere.

"Greenhouse gases block about 40 percent of outgoing thermal radiation that emanates from Earth," Woods said. The resulting imbalance between incoming solar radiation and outgoing thermal radiation will likely cause Earth to heat up over the next century, accelerating the melting polar ice caps, causing sea levels to rise and increasing the probability of more violent global weather patterns.

Non-Human Influences on Climate Change
Before the Industrial Age, the sun and volcanic eruptions were the major influences on Earth's climate change. Earth warmed and cooled in cycles. Major cool periods were ice ages, with the most recent ending about 11,000 years ago.

"Right now, we are in between major ice ages, in a period that has been called the Holocene," said Cahalan. "Over recent decades, however, we have moved into a human-dominated climate that some have termed the Anthropocene. The major change in Earth's climate is now really dominated by human activity, which has never happened before."

The sun is relatively calm compared to other stars. "We don't know what the sun is going to do a hundred years from now," said Doug Rabin, a solar physicist at Goddard. "It could be considerably more active and therefore have more influence on Earth's climate."

Or, it could be calmer, creating a cooler climate on Earth similar to what happened in the late 17th century. Almost no sunspots were observed on the sun's surface during the period from 1650 to 1715.

This extended absence of solar activity may have been partly responsible for the Little Ice Age in Europe and may reflect cyclic or irregular changes in the sun's output over hundreds of years. During this period, winters in Europe were longer and colder by about 1 C than they are today.

Since then, there seems to have been on average a slow increase in solar activity. Unless we find a way to reduce the amount of greenhouse gases we put into the atmosphere, such as carbon dioxide from fossil fuel burning, the solar influence is not expected to dominate climate change.

But the solar variations are expected to continue to modulate both warming and cooling trends at the level of 0.1 to 0.2 degrees Celsius (0.18 to 0.26 Fahrenheit) over many years.

Future Measurements of Solar Variability
For three decades, a suite of NASA and European Space Agency satellites have provided scientists with critical measurements of total solar irradiance. The Total Irradiance Monitor, also known as the TIM instrument, was launched in 2003 as part of the NASA's SORCE mission, and provides irradiance measurements with state-of-the-art accuracy.

TIM has been rebuilt as part of the Glory mission, scheduled to launch in 2009. Glory's TIM instrument will continue an uninterrupted 30-year record of solar irradiance measurements and will help researchers better understand the sun's direct and indirect effects on climate. Glory will also collect data on aerosols, one of the least understood pieces of the climate puzzle.

Related Links
View a video explaining the solar balance process
Solar Science News at SpaceDaily



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


A Super Solar Flare
Washington DC (SPX) May 07, 2008
At 11:18 AM on the cloudless morning of Thursday, September 1, 1859, 33-year-old Richard Carrington-widely acknowledged to be one of England's foremost solar astronomers-was in his well-appointed private observatory. Just as usual on every sunny day, his telescope was projecting an 11-inch-wide image of the sun on a screen, and Carrington skillfully drew the sunspots he saw.







  • French contemplate bid for leading UK nuclear utility
  • Finland to decide on new nuclear reactors in 2010: govt
  • EDF buys land near British nuclear sites: report
  • Most Finns against new nuclear reactors in Finland: poll

  • McCain splits with Bush on climate change
  • Key Climate Sensor Restored To NPOESS
  • Cleaner air to worsen droughts in Amazon: study
  • Australia needs years of heavy rainfall to crack drought: experts

  • Keeping Yields, Profits And Water Quality High
  • Surging food prices bite across Asia
  • Chinese firm to grow rice in Tanzania: company
  • China aims to keep grain output above 500 mln tonnes in 2008: report

  • Rainfall, rivers predict fish biodiversity
  • What's Bugging Locusts. It Could Be They're Hungry - For Each Other
  • Platypus Genome Sequenced, Unlocking Secrets Of Evolution
  • UNEP sounds alarm over decline in migratory birds

  • NASA Successfully Completes First Series Of Ares Engine Tests
  • NASA Awards Contract For Ares I Mobile Launcher
  • Russia's Energomash To Double Production Of Rocket Engines
  • Queensland Uni And NASA Sign Hypersonic Propulsion Deal

  • Nuclear Power In Space - Part 2
  • Outside View: Nuclear future in space
  • Nuclear Power In Space

  • USGS Awards Satellite Imagery Contracts: Enhancing Access To Users
  • Bluesky Launches 3D Computer Models Of Britain's Cities
  • Cartosat 2a Puts The World In High Resolution For Indian Government
  • NASA Nasa Satellite Captures Image Of Cyclone Nargis Flooding In Myanmar

  • Raytheon Reaches Key Milestone On NASA Glory Space Program
  • Integral Systems Europe Announces EPOCH IPS Satellite Ground System PUS Compliance
  • Boeing Provides New Test Facility For Next-Gen Radar Technology
  • NASA's WMAP Poses For ESA's Gaia

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement