Solar Energy News
SOLAR SCIENCE
Solar activity likely to peak next year, new study suggests
Sol with a serious case of the pox as we near Solar Maximum.
Solar activity likely to peak next year, new study suggests
by Staff Writers
London, UK (SPX) Nov 29, 2023

Researchers at the Center of Excellence in Space Sciences India at IISER Kolkata have discovered a new relationship between the Sun's magnetic field and its sunspot cycle, that can help predict when the peak in solar activity will occur. Their work indicates that the maximum intensity of solar cycle 25, the ongoing sunspot cycle, is imminent and likely to occur within a year. The new research appears in Monthly Notices of the Royal Astronomical Society: Letters.

Our star, the Sun, is made up of hot ionized gas known as plasma. Huge plasma flows and convection conspire together to form magnetic fields inside the Sun which manifest on the surface as dark spots. These sunspots are comparable to the size of the Earth and are seats of intense magnetism, about 10,000 times stronger than the Earth's magnetic field.

Sometimes the sunspot magnetic fields are disrupted in violent events which result in the birth of solar magnetic storms such as flares or coronal mass ejections. These storms release high energy radiation and hurl vast amounts of magnetized plasma in to outer space. The most intense of these storms can cause serious damage to orbiting satellites, electric power grids and telecommunications when Earth directed.

Centuries of observations starting from the early 1600s show that the number of sunspots observed on the Sun varies periodically. Approximately every 11 years the number of spots and the intensity of solar activity reach a peak when the most violent perturbations in planetary space environments - or space weather - are expected. However, predicting when this peak is going to occur has remained challenging.

The solar cycle is produced by a dynamo mechanism driven by energy from plasma flows inside the Sun. This dynamo mechanism is understood to involve two primary components of the Sun's magnetic field, one which manifests in the cycle of sunspots and another which manifests in a recycling of the large-scale dipole field of the Sun; the latter is much like the Earth's magnetic field - stretching from one pole of the Sun to another. With the cycle of sunspots, the Sun's dipole field is also observed to wax and wane in strength, the north and south magnetic poles swap places, also every 11 years.

In 1935, Swiss astronomer Max Waldmeier discovered that the faster the rate of rise of a sunspot cycle the stronger its strength, so stronger cycles take less time to rise to their peak intensity. This relationship has often been utilised to forecast the strength of a sunspot cycle based on observations of its early rising phase.

In a research manuscript appearing in the Monthly Notices of the Royal Astronomical Society Letters, Priyansh Jaswal, Chitradeep Saha and Dibyendu Nandy of IISER Kolkata report the discovery of a new relationship, namely, the rate of decrease in the Sun's dipole magnetic field is also related to the rate of rise of the ongoing sunspot cycle.

This discovery, utilising decades-old data archives from multiple ground-based solar observatories around the world, complements the Waldmeier effect, connecting the two primary magnetic field components of the Sun and supporting the theory that the evolution of sunspots are integral to the functioning of the solar dynamo process rather than being a mere symptom of it.

The scientists demonstrate how observations of the rate of decrease of the Sun's dipole magnetic field can be usefully combined with sunspot observations to predict when the ongoing cycle would peak. Their analysis suggests that the maximum of solar cycle 25 is most likely to occur in early 2024 with an uncertainty in the estimate that ranges to September 2024.

With this discovery, a new window opens up for forecasting the timing of the peak of solar cycles - when the most intense activity and most frequent space weather disturbances are expected.

Research Report:Discovery of a relation between the decay rate of the Sun's magnetic dipole and the growth rate of the following sunspot cycle: a new precursor for solar cycle prediction

Related Links
Current Images at Sol
Royal Astronomical Society
Solar Science News at SpaceDaily

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SOLAR SCIENCE
SwRI's PUNCH Mission Set for 2025 Launch: A New Era in Solar Wind Study
Los Angeles CA (SPX) Nov 28, 2023
The Polarimeter to UNify the Corona and Heliosphere (PUNCH) mission, a significant endeavor led by Southwest Research Institute (SwRI), has recently crossed a pivotal milestone, advancing its journey toward a planned 2025 launch. On November 17, 2023, the mission successfully passed its internal system integration review, marking a crucial phase in its development. This step signifies the transition from assembling individual subsystems to integrating complete observatories, readying them for their spac ... read more

SOLAR SCIENCE
Nigerians look to biofuel as cost of cooking gas soars

Chinese company gives leftover hotpot oil second life as jet fuel

Cheap and efficient ethanol catalyst from laser-melted nanoparticles

UK permits 'world-first' flight powered by sustainable fuels

SOLAR SCIENCE
Arcus: Collins Aerospace's novel training image generator revolutionizes aircrew simulation

Scientists build tiny biological robots from human cells

After chaos, Microsoft wins observer seat at OpenAI

What does the future hold for generative AI?

SOLAR SCIENCE
UK unveils massive news windfarm investment by UAE, German firms

Wind and solar projects can profit from bitcoin mining

Winds of change? Bid to revive England's onshore sector

Drones to transport personnel and materials to offshore wind farms

SOLAR SCIENCE
Giddy Musk unveils Cybertruck in Tesla's latest defiant bet

Honda to invest $3.4 bn on electric two-wheelers this decade

US proposes EV tax credit rules to curb Chinese inputs

To help robocars make moral decisions, researchers ditch the 'trolley problem'

SOLAR SCIENCE
Japanese experimental nuclear fusion reactor inaugurated

Cost-effective electrocatalysts for cleaner hydrogen fuel production

New study shows how universities are critical to emerging fusion industry

Glencore eyes options on battery recycling project

SOLAR SCIENCE
US leads call to triple nuclear power at COP28

Framatome to set up fuel fabrication facility in the UK

Nuclear power has role to play, atomic energy head tells AFP at COP28

Framatome signs a services contract with EDF for Flamanville 3 Instrumentation and Control

SOLAR SCIENCE
COP28: Why energy efficiency matters so much

World Bank to operate 'loss and damage' climate fund

US pledges $3 billion to green climate fund at COP28

Banks could face rules on climate risk reporting

SOLAR SCIENCE
New suspect in murder of Honduras environmental leader

France pays Congo, Papua New Guinea $150 million to save forests

New study offers cautious hope about the resilience of redwoods

'It destroys everything': Amazon community fights carbon credit project

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.