Solar Energy News  
SOLAR DAILY
Solar energy: Mixed anion compounds with 'fluorine' works as new photocatalytic material
by Staff Writers
Tokyo, Japan (SPX) Jun 01, 2018

The inset shows an image of Pb2Ti2O5.4F1.2, shown to be capable of absorbing visible light of a wavelength of around 500 nm. This ability is thought to be due to the bonding structure around the Pb cation within the pyrochlore lattice, shown on the right.

Scientists in Japan have shown that an oxyfluoride is capable of visible light-driven photocatalysis[1]. The finding opens new doors for designing materials for artificial photosynthesis and solar energy research.

Over the last decade, research has intensified to develop efficient, manmade photocatalysts that work under visible light - an important target for renewable energy systems.

Now, such efforts have taken a surprising turn, with the discovery of a new photocatalytic material called a pyrochlore[2] oxyfluoride (Pb2Ti2O5.4F1.2).

Kazuhiko Maeda of Tokyo Institute of Technology (Tokyo Tech), Kengo Oka of Chuo University and collaborators in Japan have succeeded in demonstrating that Pb2Ti2O5.4F1.2 works as a stable photocatalyst for visible light-driven water splitting and carbon dioxide reduction, with the aid of proper surface modifications.

The new material has an unusually small band gap[3] of around 2.4 electron volts (eV), meaning that it can absorb visible light with a wavelength of around 500 nanometers (nm). In general, band gaps bigger than 3 eV are associated with inefficient utilization of sunlight, whereas those smaller than 3 eV are desirable for efficient solar energy conversion.

What's more, the oxyfluoride belongs to a group of compounds that had until now been largely overlooked due to the highest electronegativity[4] of fluorine, a property that essentially ruled them out as candidates for visible light-driven photocatalysts.

The new oxyfluoride is "an exceptional case", the researchers say in their study published in the Journal of the American Chemical Society.

Based on structural considerations and theoretical calculations, they conclude that "the origin of the visible light response in Pb2Ti2O5.4F1.2 lies in the unique features specific to the pyrochlore-type structure."

Namely, it is the strong interaction between certain orbitals[5] (Pb-6s and O-2p) enabled by short Pb-O bonding in the pyrochlore structure that is thought to give rise to the material's ability to absorb visible light.

One limitation is that the yield of the new photocatalyst currently remains low, at a figure of around 0.01% at 365 nm for hydrogen evolution. The research team is therefore investigating how to boost the yield by modifying Pb2Ti2O5.4F1.2 through refinement of methods for synthesis and surface modification.

The present study arose as a result of collaborations between institutes including Tokyo Tech, Japan Advanced Institute of Science and Technology (JAIST), the National Institute for Materials Science (NIMS), RIKEN, Kyoto University and Chuo University.

The findings are expected to lead to new directions in materials research and future development of heterogeneous photocatalysts under visible light.

Research paper


Related Links
Tokyo Institute of Technology
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
A photosynthetic engine for artificial cells
Boston MA (SPX) May 30, 2018
In the quest to build an artificial cell, there are two approaches: The first, reengineers the genomic software of a living cell. The second, focuses on cellular hardware, building simple, cell-like structures from the ground up that mimic the function of living cells. One of the biggest challenges in this second approach is mimicking the intricate chemical and biological reactions required for cells to perform complex behaviors. Now, an international team of researchers from Harvard University an ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
'Deforestation-free' palm oil not as simple as it sounds

Advanced biofuels can be produced extremely efficiently, confirms industrial demonstration

Technique doubles conversion of CO2 to plastic component

Scientists have deciphered the chemical reaction mechanism critical for cleaner combustion

SOLAR DAILY
'Smart' material enables novel applications in autonomous driving and robotics

Robotic assembly of the world's smallest house

Lu resignation a blow for Baidu's push into AI, analysts say

Google pushes artificial intelligence for upgraded news app

SOLAR DAILY
U.S. Atlantic states eye offshore wind leadership

European wind energy generation potential in a warmer world

New York to world's largest offshore wildlife aerial survey

German utility E.ON sees renewable sector growth

SOLAR DAILY
Electric vehicle market exposed to risk from violence

Hamburg leads charge with Germany's first diesel ban

Waymo adds 62,000 vehicles for autonomous taxi service

Britain's supply of electric cars at risk from Brexit: think-tank

SOLAR DAILY
Researchers predict materials to stabilize record-high capacity lithium-ion battery

Better, faster, stronger: Building batteries that don't go boom

Scientists improve ability to measure electrical properties of plasma

Why bioelectrodes for energy conversion are not stable

SOLAR DAILY
France: Framatome to supply EDF with Enriched Reprocessed Uranium fuel assemblies

Framatome partners with McAfee to support energy industry cybersecurity

World's first floating nuclear barge to power Russia's Arctic oil drive

France: Framatome to supply EDF with Enriched Reprocessed Uranium fuel assemblies

SOLAR DAILY
Study highlights environmental cost of tearing down Vancouver's single-family homes

Bitcoin estimated to use half a percent of the world's electric energy by end of 2018

Top US court to examine India power plant complaint

Portugal's EDP rejects Chinese takeover offer

SOLAR DAILY
New research finds tall and older Amazonian forests more resistant to droughts

Zangbeto: voodoo saviour of Benin's mangroves

New technique reveals details of forest fire recovery

Forest loss in one part of US can harm trees on the opposite coast









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.