![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers West Lafayette IN (SPX) Dec 30, 2019
Most of today's solar panels capture sunlight and convert it to electricity only from the side facing the sky. If the dark underside of a solar panel could also convert sunlight reflected off the ground, even more electricity might be generated. Double-sided solar cells are already enabling panels to sit vertically on land or rooftops and even horizontally as the canopy of a gas station, but it hasn't been known exactly how much electricity these panels could ultimately generate or the money they could save. A new thermodynamic formula reveals that the bifacial cells making up double-sided panels generate on average 15% to 20% more sunlight to electricity than the monofacial cells of today's one-sided solar panels, taking into consideration different terrain such as grass, sand, concrete and dirt. The formula, developed by two Purdue University physicists, can be used for calculating in minutes the most electricity that bifacial solar cells could generate in a variety of environments, as defined by a thermodynamic limit. "The formula involves just a simple triangle, but distilling the extremely complicated physics problem to this elegantly simple formulation required years of modeling and research. This triangle will help companies make better decisions on investments in next-generation solar cells and figure out how to design them to be more efficient," said Muhammad "Ashraf" Alam, Purdue's Jai N. Gupta Professor of Electrical and Computer Engineering. In a paper published in the Proceedings of the National Academy of Sciences, Alam and coauthor Ryyan Khan, now an assistant professor at East West University in Bangladesh, also show how the formula can be used to calculate the thermodynamic limits of all solar cells developed in the last 50 years. These results can be generalized to technology likely to be developed over the next 20 to 30 years. The hope is that these calculations would help solar farms to take full advantage of bifacial cells earlier in their use. "It took almost 50 years for monofacial cells to show up in the field in a cost-effective way," Alam said. "The technology has been remarkably successful, but we know now that we can't significantly increase their efficiency anymore or reduce the cost. Our formula will guide and accelerate the development of bifacial technology on a faster time scale." The paper might have gotten the math settled just in time: experts estimate that by 2030, bifacial solar cells will account for nearly half of the market share for solar panels worldwide. Alam's approach is called the "Shockley-Queisser triangle," since it builds upon predictions made by researchers William Shockley and Hans-Joachim Queisser on the maximum theoretical efficiency of a monofacial solar cell. This maximum point, or the thermodynamic limit, can be identified on a downward sloping line graph that forms a triangle shape. The formula shows that the efficiency gain of bifacial solar cells increases with light reflected from a surface. Significantly more power would be converted from light reflected off of concrete, for example, compared to a surface with vegetation. The researchers use the formula to recommend better bifacial designs for panels on farmland and the windows of buildings in densely-populated cities. Transparent, double-sided panels allow solar power to be generated on farmland without casting shadows that would block crop production. Meanwhile, creating bifacial windows for buildings would help cities to use more renewable energy. The paper also recommends ways to maximize the potential of bifacial cells by manipulating the number of boundaries between semiconductor materials, called junctions, that facilitate the flow of electricity. Bifacial cells with single junctions provide the largest efficiency gain relative to monofacial cells. "The relative gain is small, but the absolute gain is significant. You lose the initial relative benefit as you increase the number of junctions, but the absolute gain continues to rise," Khan said. The formula, detailed in the paper, has been thoroughly validated and is ready for companies to use as they decide how to design bifacial cells.
Research Report: Shockley-Queisser triangle predicts the thermodynamic efficiency limits of arbitrarily complex multijunction bifacial solar cells
![]() ![]() A flaky option boosts organic solar cells Thuwal, Saudi Arabia (SPX) Dec 19, 2019 An inexpensive material, made from tungsten disulfide flakes just a few atoms thick, has helped to improve the performance of organic solar cells1. The discovery by KAUST researchers could be an important step toward bringing these photovoltaic cells into wider use for generating clean electricity. Most solar cells use silicon to absorb light and convert its energy into electricity. But carbon-based semiconductor molecules, used in organic photovoltaics (OPVs), offer some distinct advantages over ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |