Solar Energy News  
SOLAR SCIENCE
Solar storms trigger Jupiter's 'Northern Lights'
by Staff Writers
London, UK (SPX) Mar 24, 2016


The Sun constantly ejects streams of particles into space in the solar wind. When giant storms erupt, the winds become much stronger and compress Jupiter's magnetosphere, shifting its boundary with the solar wind two million kilometres through space.

Solar storms trigger Jupiter's intense 'Northern Lights' by generating a new X-ray aurora that is eight times brighter than normal and hundreds of times more energetic than Earth's aurora borealis, finds new UCL-led research using NASA's Chandra X-Ray Observatory.

It is the first time that Jupiter's X-ray aurora has been studied when a giant storm from the Sun has arrived at the planet. The dramatic findings complement NASA's Juno mission this summer which aims to understand the relationship between the two biggest structures in the solar system - the region of space controlled by Jupiter's magnetic field (i.e. its magnetosphere) and that controlled by the solar wind.

"There's a constant power struggle between the solar wind and Jupiter's magnetosphere. We want to understand this interaction and what effect it has on the planet. By studying how the aurora changes, we can discover more about the region of space controlled by Jupiter's magnetic field, and if or how this is influenced by the Sun.

"Understanding this relationship is important for the countless magnetic objects across the galaxy, including exoplanets, brown dwarfs and neutron stars," explained lead author and PhD student at UCL Mullard Space Science Laboratory, William Dunn.

The Sun constantly ejects streams of particles into space in the solar wind. When giant storms erupt, the winds become much stronger and compress Jupiter's magnetosphere, shifting its boundary with the solar wind two million kilometres through space.

The study found that this interaction at the boundary triggers the high energy X-rays in Jupiter's Northern Lights, which cover an area bigger than the surface of the Earth.

Published in the Journal of Geophysical Research - Space Physics a publication of the American Geophysical Union, the discovery comes as NASA's Juno spacecraft nears Jupiter for the start of its mission this summer. Launched in 2011, Juno aims to unlock the secrets of Jupiter's origin, helping us to understand how the solar system, including Earth, formed.

As part of the mission, Juno will investigate Jupiter's relationship with the Sun and the solar wind by studying its magnetic field, magnetosphere and aurora. The UCL team hope to find out how the X-rays form by collecting complementary data using the European Space Agency's X-ray space observatory, XMM-Newton, and NASA's Chandra X-ray observatory.

"Comparing new findings from Jupiter with what is already known for Earth will help explain how space weather is driven by the solar wind interacting with Earth's magnetosphere.

"New insights into how Jupiter's atmosphere is influenced by the Sun will help us characterise the atmospheres of exoplanets, giving us clues about whether a planet is likely to support life as we know it," said study supervisor, Professor Graziella Branduardi-Raymont, UCL Mullard Space Science Laboratory.

The impact of solar storms on Jupiter's aurora was tracked by monitoring the X-rays emitted during two 11 hour observations in October 2011 when an interplanetary coronal mass ejection was predicted to reach the planet from the Sun. The scientists used the data collected to build a spherical image to pinpoint the source of the X-ray activity and identify areas to investigate further at different time points.

William Dunn added, "In 2000, one of the most surprising findings was a bright 'hot spot' of X-rays in the aurora which rotated with the planet. It pulsed with bursts of X-rays every 45 minutes, like a planetary lighthouse.

"When the solar storm arrived in 2011, we saw that the hot spot pulsed more rapidly, brightening every 26 minutes. We're not sure what causes this increase in speed but, because it quickens during the storm, we think the pulsations are also connected to the solar wind, as well as the bright new aurora."

Research paper: The impact of an ICME on the Jovian X-ray aurora


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University College London
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SOLAR SCIENCE
Citizen scientists help NASA researchers understand auroras
Greenbelt MD (SPX) Mar 14, 2016
Space weather scientist Liz MacDonald has seen auroras more than five times in her life, but it was the aurora she didn't see that affected her the most. On the evening of Oct. 24, 2011, MacDonald was sitting in front of her computer at her home in Los Alamos, New Mexico. Forecasts predicted a geomagnetic storm would hit Earth that night and potentially create beautiful aurora. The aurora ... read more


SOLAR SCIENCE
The flexible way to greater energy yield

Smaller, cheaper microbial fuel cells turn urine into electricity

Generating electricity with tomato waste

Lockheed and Concord Blue to build new bioenergy facility in Germany

SOLAR SCIENCE
Drexel research helps bacteria-powered microrobots plot a course

Robot learning companion offers custom-tailored tutoring

Light illuminates the way for bio-bots

Less than meets the eye

SOLAR SCIENCE
Statoil testing battery storage for wind energy

Small-scale wind energy on the rise

Re-thinking renewable energy predictions

Xinjiang Goldwind now world's top wind turbine producer

SOLAR SCIENCE
Industry calls for fast lane for self-driving cars

US unveils emergency braking deal with automakers

VW dealers in Germany not obliged to take back diesel cars, court rules

Investors sue VW in Germany for more than 3 bn euros

SOLAR SCIENCE
Compressing turbulence to improve internal confinement fusion experiments

Pumping up energy storage with metal oxides

Could bread mold build a better rechargeable battery?

Advanced energy storage material gets unprecedented nanoscale analysis

SOLAR SCIENCE
France's EDF to decide on UK nuclear plant by May: Macron

China's advanced meltdown-free nuclear plant gets core component

Vessel carrying plutonium departs Japan port for US

Researchers crack 50-year-old nuclear waste problem, make storage safer

SOLAR SCIENCE
Transforming the US transportation system by 2050 to address climate challenges

Economic growth no longer translates into more greenhouse gas: IEA

Long march in Bangladesh against Sundarbans power plant

China emissions goals less ambitious than 2015 cuts: plan

SOLAR SCIENCE
Drought alters recovery of Rocky Mountain forests after fire

Recycling pecan wood for commercial growing substrates

China's forest recovery shows hope for mitigating global climate change

No logging at protected Tasmanian forest: Australia









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.