Solar Energy News  
ROCKET SCIENCE
Sounding Rocket to See What Keeps Intergalactic Space Sizzling
by Miles Hatfield for GSFC News
Greenbelt MD (SPX) Oct 30, 2020

A comparison of typical sizes of main sequence stellar classes. Main sequence stars are those that fuse hydrogen into helium in their cores. O-type stars have surface temperatures around 90,000 degrees Fahrenheit (50,000 degrees Fahrenheit) and can be up to 1 million times brighter than the Sun. B-type stars have surface temperatures around 40,000 degrees F (20,000 degrees C) and can be tens of thousands of times brighter than the Sun. The Morgan-Keenan system shown here classifies stars based on their spectral characteristics.

NASA's next sounding rocket will measure light from some of the hottest stars, in hopes of finding out what's cooking the space between galaxies.

The Dual-channel Extreme Ultraviolet Continuum Experiment, or DEUCE, is scheduled to launch from the White Sands Missile Range in New Mexico early on Nov. 2. This is DEUCE's second flight, during which it will observe the second of two stars on its target list. Once above Earth's atmosphere, it will measure that star's extreme ultraviolet light to see if it might explain how the matter between galaxies remains puzzlingly hot.

One of the chief mysteries about the intergalactic medium, the stuff that fills the vast space between galaxies, is why it is a plasma - a gas so hot that its atoms have been pried apart. In the depths of space, positively charged ions buzz alongside negatively charged electrons at temperatures over 180,000 degrees Fahrenheit (100,000 degrees Celsius), so hot they can't recombine into stable atoms.

Astronomers know how it got that way - in the turbulent early days of the universe, exploding stars called supernovae were common, and kept the intergalactic medium sizzling. The mystery is how, in a far calmer universe, it stays ionized today.

"Without a consistent source of ionizing radiation, it should recombine - it's had billions of years to do so," said James Green, an astrophysicist at the University of Colorado and principal investigator of the DEUCE mission. "So there must be a continuing source of ionizing radiation. Where's that coming from?"

The most likely explanation is that starlight escaping from galaxies pours out into the intergalactic medium, frying the atoms there. But only certain kinds of starlight could do it. Ionizing the intergalactic medium - which is made mostly of hydrogen - takes extreme ultraviolet light, and only O- and B-type stars emit enough to do the job.

O-type stars, which are up to a million times brighter than our Sun, are the hottest and brightest in the universe. But they don't live long enough to be a consistent power source. B-type stars live longer but tend to be dimmer, so gas within their galaxy would absorb much of their extreme UV light before it could escape.

With the DEUCE mission, Green is testing out a combined idea: that O and B stars give a one-two punch.

"The theory proposes that the O stars go through their supernova phase, blow holes out of the galaxy, and maybe then the B stars - which live longer but aren't as massive or hot - shine their light out," said Green. "While they don't produce nearly as many photons as the O stars, B stars might be more efficient at getting them to the intergalactic medium."

To find out, Green is observing the two nearest B stars: Epsilon Canis Majoris, also known as Adhara, and Beta Canis Majoris, also known as Mirzam. Located about 500 light-years away in the constellation Canis Major, both stars are visible with the naked eye.

The extreme ultraviolet light from both stars that reaches Earth is quickly absorbed by our thick atmosphere. So Green and his team are launching their instruments on a sounding rocket, a type of rocket that makes a brief trip into space and then falls back to Earth. In its roughly 15-minute flight, DEUCE will have about six minutes of observing time.

DEUCE will target Beta Canis Majoris for this flight, having observed Epsilon in 2018. The 2018 measurements found Epsilon likely isn't bright enough to ionize the intergalactic medium, but Green stresses the importance of making multiple measurements.

"I don't know if the star is typical or atypical," said Green. "The second measurement is always cool, because it's either the same, or it's different."

Like many sounding rocket missions, DEUCE is also testing out new technology. The rocket payload uses a new kind of microchannel plate detector - a device used to measure both particles and light. DEUCE's plate is larger and made of more durable material - the same stuff that used to go into Pyrex plates.

"They have a lot of advantages over the plates that are currently in NASA's Hubble Space Telescope, which are all glass. They're much hardier as well, more physically robust and harder to break," Green said.

Being hardy is especially important for sounding rocket payloads, which parachute back to the ground after the flight. The team hopes to refurbish the payload in time for a new launch from Australia in 2021. There, it will observe our closest neighboring star system, Alpha Centauri, to see if its starlight is too intense to support a habitable exoplanet.

"The last two recoveries have been completely intact. We just turn it on and it works," Green said. "Hopefully it'll be the same here. We'll take it back to Colorado, clean it up, make some modifications and in February, we'll get ready for the Australia campaign."

The DEUCE experiment will launch aboard a Black Brant IX sounding rocket. NASA's sounding rocket program, based out of NASA Goddard Space Flight Center's Wallops Flight Facility, flies 20 rockets annually, testing new instruments and supporting cutting-edge research in astrophysics and heliophysics.


Related Links
Sounding Rocket
Rocket Science News at Space-Travel.Com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROCKET SCIENCE
Shetland spaceport boosts UK's plans for launch
London, UK (SPX) Oct 23, 2020
Hundreds of space jobs will be created in Scotland following the approval of plans for Lockheed Martin to transfer its satellite launch operations to Shetland Space Centre by the UK government. Shetland Space Centre anticipates that by 2024, the spaceport site could support a total of 605 jobs in Scotland including 140 locally and 210 across the wider Shetland region. A further 150 jobs will also be created through wider manufacturing and support services. Following a thorough process of due dilig ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROCKET SCIENCE
Making biodiesel from dirty old cooking oil just got way easier

Greasezilla Announces Plans to Launch Hub-and-Spoke Regional Systems for Biodiesel Manufacturers in 2021

The highest heat-resistant plastic ever is developed from biomass

Microsoft, Alaska Airlines team up for alternative jet fuel

ROCKET SCIENCE
"What to Expect When You're Expecting Robots"

Translating lost languages using machine learning

A global collaboration to move artificial intelligence principles to practice

Automated technology allows unparalleled space exploration from Moon, to asteroids, and beyond

ROCKET SCIENCE
California offshore winds show promise as power source

Offshore wind power now so cheap it could pay money back to consumers

ROCKET SCIENCE
VW's Traton, Toyota's Hino agree electric truck venture

Charging electric cars up to 90% in 6 minutes

Used car exports drives pollution to developing world

Tesla to recall 30,000 cars from China over suspension defects

ROCKET SCIENCE
Infrared light antenna powers molecular motor

Realistic simulation of plasma edge instabilities in tokamaks

Highview Power and Enlasa to develop giga-scale cryogenic energy storage projects in Latin America

Good vibrations for new energy

ROCKET SCIENCE
Russian scientists suggested a transfer to safe nuclear energy

The new heavy isotope mendelevium-244 and a puzzling short-lived fission activity

Framatome launches Framatome Defense to support the French national defense industry

Framatome showcases nuclear technologies at China's first international nuclear exhibition since COVID-19

ROCKET SCIENCE
Japan PM Suga sets 2050 deadline for carbon neutrality

Xi's big carbon promise on the table as China's leaders meet

South Korea to seek carbon neutrality by 2050: Moon

Space to help build a green post-pandemic economy

ROCKET SCIENCE
Reforestation plans in Africa could go awry

US firms fund deforestation, abuses in Amazon: report

Evidence of biodiversity losses found deep inside the rainforest

In new German save-the-forest fight, migrant captain centre stage









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.