Subscribe free to our newsletters via your
. Solar Energy News .




SPACE TRAVEL
Space exploration can drive the next agricultural revolution
by Nikolaus Correll (University of Colorado) for The Conversation
Melbourne, Australia (SPX) Dec 09, 2013


File image.

Habitation of outer space needs solving air, water, energy and food supplies within a tight space. And this isn't a problem of an apocalyptic, remote future. Developing this technology addresses some of the grand challenges to our civilisation. Space exploration can be one of the main drivers to revolutionise sustainable agriculture on Earth for many reasons.

First, so far agriculture has not been a driver of innovation in automation, but a beneficent of it. That needs to change. The current economy promotes increasing the size of farm equipment and producing a single crop for many years, which are techniques better suited to automation.

Advances in robotics can decrease the detrimental effects of farming by improving resource management and inter-cropping (that is changing the type of crop produced).

Small-scale robotic platforms can provide each plant with the required resources as it needs them. This can help agriculture reclaim urban environments, such as inside buildings or on roofs.

Addressing the challenge of making urban environments greener is similar to the challenges of solving food production on a spaceship or in a Mars colony. Solutions will not come from incremental changes to the current system, but require a disruptive approach - such as the use of robots.

Second, sustainable agriculture is a systems challenge that requires advances in renewable energy and integration of resource management, especially in urban environments or those of a spaceship.

Going to Mars is a "rucksack problem". Explorers have to decide on a combination of provisions and tools that allow them to maximise exploration and minimise their risk of failure. They are limited by the size of the spaceship. Larger vessels can bring more goods, but also require larger crews to maintain them, again requiring more resources.

Leaving the Earth is not easy. The launch mass of a spaceship is limited by fuel constraints. The larger the mass, the more fuel is needed for lift-off. This limits how long we can sustain ourselves in space, where we can go and what we can do there.

Calculating the right launch mass and potential yield has shown that growing food in space becomes advantageous for missions exceeding two years in space. For shorter missions the additional launch mass required to grow plants would be better used by bringing additional resources.

An alternative scenario is to launch life support systems to arrive before humans do. In both cases, automation is necessary because use of humans in space is inefficient.

On Earth advances in agricultural practises and transport systems have solved the automation problem in even the most remote locations. But this approach is about to reach its limit, and may be solutions from space research can help.

For instance, solutions for a sustainable presence in space need better use of the resources, including efficient recycling. So food could be grown from waste water and carbon dioxide. Such technology would have benefits on Earth too.

Third, NASA's development of advanced life support systems is strongly dependent on the perceived value of its mission. Using space exploration as a driver to solve our most pressing grand challenges: air, energy, water and food is a strong narrative to gain public support.

Growing food in space is not a critical component of missions yet, but will be soon enough. Research in space-based agriculture should focus on three fronts: increasing our knowledge of in-space plant growth, solving the key challenges to plant maintenance and understanding the impact that such kind of living has on humans in the isolation of space.

These three developments are closely related and all get help from robots. As fully autonomous plant maintenance requires solutions to a series of hard problems in perception and manipulation, the initial focus should be on remote operation of the growing process.

Devising a system that solves all the mechanical, user interface and communication challenges that would allow for sustainably growing plants can serve as the basis for future automation. This could then motivate its own mission, such as deploying a greenhouse container to the Moon or Mars.

Published under Creative Commons License

.


Related Links
The Conversation
Space Tourism, Space Transport and Space Exploration News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SPACE TRAVEL
Moon gardens: NASA to sow first seeds of future habitat
Moscow (Voice of Russia) Dec 03, 2013
NASA is bravely venturing into new scientific territory with a plan to start growing plants on the moon no later than 2015. The experiment is designed to yield important knowledge about life's long-term chances in space - including for us. The initiative comes courtesy of the Lunar Plant Growth Habitat team - a small group of scientists, students, volunteers and contractors - who plan to i ... read more


SPACE TRAVEL
Ground broken on $6 million Hungarian farm biogas plant

Team reports on US trials of bioenergy grasses

Companies could make the switch to wood power

Turning waste into power with bacteria and loofahs

SPACE TRAVEL
Literal Android: Google develops robots to replace people in manufacturing, retail

Droids dance, dogs nuzzle, humanoids speak at Madrid robot museum

Spanish scientists are designing a robot for inspecting tunnels

Penguin-inspired propulsion system

SPACE TRAVEL
Morgan Advanced Materials Delivers Superior Insulation Solution To Wind Farm

Ethiopia spearheads green energy in sub-Saharan Africa

Small-Wind Power Market to Reach $3 Billion by 2020

Siemens achieves major step in type certification for 6MW Offshore Wind Turbine

SPACE TRAVEL
Britain pledges commitment to driverless car technology

China approves $1.3 bn Renault-Dongfeng joint venture

Sweden joins race for self-driving cars

Motorized bicycle wheel said to give 20 mph speed, range of 30 miles

SPACE TRAVEL
With US ties frayed, Saudi calls for Gulf union

Chevron resumes shale work in Romania despite protest

KAIST developed the biotemplated design of piezoelectric energy harvesting device

Amid growing violence, Lebanon presses on with Med gas auction

SPACE TRAVEL
Australian government orders uranium mine to close

China, France to jointly target nuclear power markets

Niger says seeks better uranium terms from French Areva

Releasing radioactive water an option for Fukushima?

SPACE TRAVEL
The heat is on...or off

French Alstom sues Chinese firm in Bulgaria over patent

India needs $2.1 trillion investment for energy: IEA

Rice U. study: It's not easy 'being green'

SPACE TRAVEL
Humans threaten wetlands' ability to keep pace with sea-level rise

Development near Oregon, Washington public forests

Researchers identify genetic fingerprints of endangered conifers

Lowering stand density reduces mortality of ponderosa pine stands




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement