Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Squid and zebrafish cells inspire camouflaging smart materials
by Staff Writers
Bristol UK (SPX) May 04, 2012


The colour changes in these organisms can be triggered by changes in mood, temperature, stress or something visible in the environment, and can be used for camouflage, communication or attracting a mate.

Researchers from the University of Bristol have created artificial muscles that can be transformed at the flick of a switch to mimic the remarkable camouflaging abilities of organisms such as squid and zebrafish.

They demonstrate two individual transforming mechanisms that they believe could be used in 'smart clothing' to trigger camouflaging tricks similar to those seen in nature.

"We have taken inspiration from nature's designs and exploited the same methods to turn our artificial muscles into striking visual effects," said lead author of the study Jonathan Rossiter.

The soft, stretchy, artificial muscles are based on specialist cells called chromatophores that are found in amphibians, fish, reptiles and cephalopods, and contain pigments of colours that are responsible for the animals' remarkable colour-changing effects.

The colour changes in these organisms can be triggered by changes in mood, temperature, stress or something visible in the environment, and can be used for camouflage, communication or attracting a mate.

Two types of artificial chromatophores were created in the study: the first based on a mechanism adopted by a squid and the second based on a rather different mechanism adopted by zebrafish.

A typical colour-changing cell in a squid has a central sac containing granules of pigment. The sac is surrounded by a series of muscles and when the cell is ready to change colour, the brain sends a signal to the muscles and they contract. The contracting muscles make the central sacs expand, generating the optical effect which makes the squid look like it is changing colour.

The fast expansion of these muscles was mimicked using dielectric elastomers (DEs) - smart materials, usually made of a polymer, which are connected to an electric circuit and expand when a voltage is applied. They return to their original shape when they are short circuited.

In contrast, the cells in the zebrafish contain a small reservoir of black pigmented fluid that, when activated, travels to the skin surface and spreads out, much like the spilling of black ink. The natural dark spots on the surface of the zebrafish therefore appear to get bigger and the desired optical effect is achieved. The changes are usually driven by hormones.

The zebrafish cells were mimicked using two glass microscope slides sandwiching a silicone layer. Two pumps, made from flexible DEs, were positioned on both sides of the slide and were connected to the central system with silicone tubes; one pumping opaque white spirit, the other a mixture of black ink and water.

"Our artificial chromatophores are both scalable and adaptable and can be made into an artificial compliant skin which can stretch and deform, yet still operate effectively. This means they can be used in many environments where conventional 'hard' technologies would be dangerous, for example at the physical interface with humans, such as smart clothing," continued Rossiter.

The published version of the paper "Biomimetic chromatophores for camouflage and soft active surfaces" (Bioinspir. Biomim. 7 036009) will be freely available online from 2 May.

.


Related Links
Institute of Physics
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
At smallest scale, liquid crystal behavior portends new materials
Madison WI (SPX) May 04, 2012
Liquid crystals, the state of matter that makes possible the flat screen technology now commonly used in televisions and computers, may have some new technological tricks in store. Writing in the journal Nature, an international team of researchers led by University of Wisconsin-Madison Professor of Chemical and Biological Engineering Juan J. de Pablo reports the results of a computational ... read more


TECH SPACE
Better plants for biofuels

The Andersons Finalizes Purchase of Iowa Ethanol Plant

USA Leads World in Exports of Ethanol

Butamax Expands Early Adopters Group

TECH SPACE
Scientist unveils mind-controlled robot for paraplegics

Computer scoring of student work debated

New brain-machine interface moves a paralyzed hand

Robots guard S. Korea prison inmates

TECH SPACE
NASA Satellite Measurements Imply Texas Wind Farm Impact on Surface Temperature

Scientists find night-warming effect over large wind farms in Texas

DoD, Navy and Wind Farm Developer Release Historic MoA

British engineering firm creates 1,000 wind farm jobs

TECH SPACE
Porsche says China sales drive profits sharply higher

Ford, GM sales skid as Chrysler, Toyota accelerate

Chinese tastes impact global car designs

Foreign carmakers 'pressed' to launch China brands

TECH SPACE
Netanyahu OKs key defenses for gas fields

Gas development linked to wildlife habitat loss

US doubles military aid to Philippines

US proposes more fracking disclosure

TECH SPACE
Wash. nuclear cleanup plan criticized

Greenpeace activist flies into French nuclear plant: police

Jordan weighs two offers to build nuclear plant

Japan's offline reactors send utilities into red

TECH SPACE
Bolivia seizes Spanish electric company

Iraq aims to double power provision in a year

EU offers energy partnership with China

Poll: Gov't needed for clean, green work

TECH SPACE
Green groups say Indonesia deforestation ban 'weak'

Bolivian natives begin new march in road protest

Do urban 'heat islands' hint at trees of future?

Palms reveal the significance of climate change for tropical biodiversity




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement