Subscribe free to our newsletters via your
. Solar Energy News .




CHIP TECH
Stanford breakthrough heralds super-efficient light-based computers
by Staff Writers
Stanford CA (SPX) Jun 02, 2015


Infrared light enters this silicon structure from the left. The cut-out patterns, determined by an algorithm, route two different frequencies of this light into the pathways on the right. This is a greatly magnified image of a working device that is about the size of a speck of dust. Image courtesy Alexander Piggott. For a larger version of this image please go here.

Stanford electrical engineer Jelena Vuckovic wants to make computers faster and more efficient by reinventing how they send data back and forth between chips, where the work is done. In computers today, data is pushed through wires as a stream of electrons. That takes a lot of power, which helps explain why laptops get so warm.

"Several years ago, my colleague David Miller carefully analyzed power consumption in computers, and the results were striking," said Vuckovic, referring to electrical engineering Professor David Miller. "Up to 80 percent of the microprocessor power is consumed by sending data over the wires - so called interconnects."

In a Nature Photonics article whose lead author is Stanford graduate student Alexander Piggott, Vuckovic, a professor of electrical engineering, and her team explain a process that could revolutionize computing by making it practical to use light instead of electricity to carry data inside computers.

Proven technology
In essence, the Stanford engineers want to miniaturize the proven technology of the Internet, which moves data by beaming photons of light through fiber optic threads. "Optical transport uses far less energy than sending electrons through wires," Piggott said. "For chip-scale links, light can carry more than 20 times as much data."

Theoretically, this is doable because silicon is transparent to infrared light - the way glass is transparent to visible light. So wires could be replaced by optical interconnects: silicon structures designed to carry infrared light.

But so far, engineers have had to design optical interconnects one at a time. Given that thousands of such linkages are needed for each electronic system, optical data transport has remained impractical. Now the Stanford engineers believe they've broken that bottleneck by inventing what they call an inverse design algorithm.

It works as the name suggests: the engineers specify what they want the optical circuit to do, and the software provides the details of how to fabricate a silicon structure to perform the task. "We used the algorithm to design a working optical circuit and made several copies in our lab," Vuckovic said.

In addition to Piggott, the research team included former graduate student Jesse Lu (now at Google,) graduate student Jan Petykiewicz and postdoctoral scholars Thomas Babinec and Konstantinos Lagoudakis. As they reported in Nature Photonics, the devices functioned flawlessly despite tiny imperfections.

"Our manufacturing processes are not nearly as precise as those at commercial fabrication plants," Piggott said. "The fact that we could build devices this robust on our equipment tells us that this technology will be easy to mass-produce at state-of-the-art facilities."

The researchers envision many other potential applications for their inverse design algorithm, including high bandwidth optical communications, compact microscopy systems and ultra-secure quantum communications.

Light and silicon
The Stanford work relies on the well-known fact that infrared light will pass through silicon the way sunlight shines through glass. And just as a prism bends visible light to reveal the rainbow, different silicon structures can bend infrared light in useful ways.

The Stanford algorithm designs silicon structures so slender that more than 20 of them could sit side-by-side inside the diameter of a human hair. These silicon interconnects can direct a specific frequency of infrared light to a specific location to replace a wire. By loading data onto these frequencies, the Stanford algorithm can create switches or conduits or whatever else is required for the task.

The inverse design algorithm is what makes optical interconnects practical by describing how to create what amount to silicon prisms to bend infrared light.

Once the algorithm has calculated the proper shape for the task, engineers can use standard industrial processes to transfer that pattern onto a slice of silicon. "Our structures look like Swiss cheese but they work better than anything we've seen before," Vuckovic said.

She and Piggott have made several different types of optical interconnects and they see no limits on what their inverse design algorithm can do. In their Nature photonics paper, the Stanford authors note that the automation of large-scale circuit design enabled engineers to create today's sophisticated electronics.

By automating the process of designing optical interconnects, they feel that they have set the stage for the next generation of even faster and far more energy-efficient computers that use light rather than electricity for internal data transport.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Stanford School of Engineering
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Collaboration could lead to biodegradable computer chips
Madison WI (SPX) May 29, 2015
Portable electronics - typically made of non-renewable, non-biodegradable and potentially toxic materials - are discarded at an alarming rate in consumers' pursuit of the next best electronic gadget. In an effort to alleviate the environmental burden of electronic devices, a team of University of Wisconsin-Madison researchers has collaborated with researchers in the Madison-based U.S. Depa ... read more


CHIP TECH
Dutch 'paddy power' pulls electricity from rice fields

BESC, Mascoma develop revolutionary microbe for biofuel production

Food or fuel? How about both?

A model for bioenergy feedstock/vegetable double-cropping systems

CHIP TECH
JPL's RoboSimian to compete in DARPA Robotics Challenge Finals

Helping robots put it all together

Robot masters new skills through trial and error

Robotic cheetah jumps hurdles while running

CHIP TECH
AWS Truepower Releases Windographer 4

Duke and Austin Energy complete Los Vientos III wind power project

Tri Global Energy Leads Texas in Wind Energy Development Projects

Pattern Development starts Amazon wind farm project in Indiana

CHIP TECH
Self-driving cars vulnerable to cyberattack, experts warn

Tesla boss downplays government subsidy as 'pittance'

Can virtual drivers resembling the user increase trust in smart cars

US pushes pedal on car-to-car communication

CHIP TECH
Giant structures called plasmoids could simplify the design of future tokamaks

Enhancing knowledge crucial to improving energy-saving behaviors

Visualizing how radiation bombardment boosts superconductivity

New 'designer carbon' from Stanford boosts battery performance

CHIP TECH
French presidency backs tie-up of EDF-Areva reactor businesses

Japan to Increase Geothermal Power Funding to Substitute Nuclear Energy

Russia's Rosatom Says Ready to Participate in UK Nuclear Power Projects

Rosatom Says Ukraine Paid Off 2014 Russian Nuclear Fuel Deliveries

CHIP TECH
Six energy companies call for carbon pricing

Japan PM to pledge 26% greenhouse gas cut

Fukushima operator wins Qatar utility contract

San Francisco Launches HERO Clean Energy Program

CHIP TECH
Location matters in the lowland Amazon

Fertilization regimen reduces environmental impact of landscape palms

Researchers solve puzzle as to how forests can effect our climate

British designer growing trees into furniture




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.