|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Stanford CA (SPX) Sep 22, 2015
Every time you stroll outside you emit energy into the universe: Heat from the top of your head radiates into space as infrared light. Now three Stanford engineers have developed a technology that improves on solar panel performance by exploiting this basic phenomenon. Their invention shunts away the heat generated by a solar cell under sunlight and cools it in a way that allows it to convert more photons into electricity. The work by Shanhui Fan, a professor of electrical engineering at Stanford, research associate Aaswath P. Raman and doctoral candidate Linxiao Zhu is described in the current issue of Proceedings of the National Academy of Sciences. The group's discovery, tested on a Stanford rooftop, addresses a problem that has long bedeviled the solar industry: The hotter solar cells get, the less efficient they become at converting the photons in light into useful electricity. The Stanford solution is based on a thin, patterned silica material laid on top of a traditional solar cell. The material is transparent to the visible sunlight that powers solar cells, but captures and emits thermal radiation, or heat, from infrared rays. "Solar arrays must face the sun to function, even though that heat is detrimental to efficiency," Fan said. "Our thermal overlay allows sunlight to pass through, preserving or even enhancing sunlight absorption, but it also cools the cell by radiating the heat out and improving the cell efficiency."
A cool way to improve solar efficiency In their new paper, the researchers applied that work to improve solar array performance when the sun is beating down. The Stanford team tested their technology on a custom-made solar absorber - a device that mimics the properties of a solar cell without producing electricity - covered with a micron-scale pattern designed to maximize the capability to dump heat, in the form of infrared light, into space. Their experiments showed that the overlay allowed visible light to pass through to the solar cells, but that it also cooled the underlying absorber by as much as 55 degrees Fahrenheit. For a typical crystalline silicon solar cell with an efficiency of 20 percent, 55 F of cooling would improve absolute cell efficiency by over 1 percent, a figure that represents a significant gain in energy production. The researchers said the new transparent thermal overlays work best in dry, clear environments, which are also preferred sites for large solar arrays. They believe they can scale things up so commercial and industrial applications are feasible, perhaps using nanoprint lithography, which is a common technique for producing nanometer-scale patterns. "That's not necessarily the only way," said Raman, a co-first-author of the paper. "New techniques and machines for manufacturing these kinds of patterns will continue to advance. I'm optimistic."
Cooler cars "Say you have a car that is bright red," Zhu said. "You really like that color, but you'd also like to take advantage of anything that could aid in cooling your vehicle during hot days. Thermal overlays can help with passive cooling, but it's a problem if they're not fully transparent." That's because the perception of color requires objects to reflect visible light, so any overlay would need to be transparent, or else tuned such that it would absorb only light outside the visible spectrum. "Our photonic crystal thermal overlay optimizes use of the thermal portions of the electromagnetic spectrum without affecting visible light," Zhu said, "so you can radiate heat efficiently without affecting color."
Related Links Stanford School of Engineering All About Solar Energy at SolarDaily.com
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |