Solar Energy News  
STELLAR CHEMISTRY
Star light, star bright as explained by math
by Staff Writers
Thuwal, Saudi Arabia (SPX) Apr 27, 2021

stock illustration only

Not all stars shine brightly all the time. Some have a brightness that changes rhythmically due to cyclical phenomena like passing planets or the tug of other stars. Others show a slow change in this periodicity over time that can be difficult to discern or capture mathematically. KAUST's Soumya Das and Marc Genton have now developed a method to bring this evolving periodicity within the framework of mathematically "cyclostationary" processes.

"It can be difficult to explain the variations of the brightness of variable stars unless they follow a regular pattern over time," says Das. "In this study we created methods that can explain the evolution of the brightness of a variable star, even if it departs from strict periodicity or constant amplitude."

Classic cyclostationary processes have an easily definable variation over time, like the sweep of a lighthouse beam or the annual variation in solar irradiance at a given location. Here, "stationary" refers to the constant nature of the periodicity over time and describes highly predictable processes like a rotating shaft or a lighthouse beam. However, when the period or amplitude changes slowly over many cycles, the mathematics for cyclostationary processes fails.

"We call such a process an evolving period and amplitude cyclostationary, or EPACS, process," says Das. "Since EPACS processes are more flexible than cyclostationary processes, they can be used to model a wide variety of real-life scenarios."

Das and Genton modeled the nonstationary period and amplitude by defining them as functions that vary over time. In doing this, they expanded the definition of a cyclostationary process to better describe the relationship among variables, such as the brightness and periodic cycle for a variable star. They then used an iterative approach to refine key parameters in order to fit the model to the observed process.

"We applied our method to model the light emitted from the variable star R Hydrae, which exhibited a slowing of its period from 420 to 380 days between 1900 and 1950," says Das. "Our approach showed that R Hydrae has an evolving period and amplitude correlation structure that was not captured in previous work."

Importantly, because this approach links EPACS processes back to classical cyclostationary theory, then fitting an EPACS process makes it possible to use existing methods for cyclostationary processes.

"Our method can also be applied to similar phenomena other than variable stars, such as climatology and environmetrics, and particularly for solar irradiance, which could be useful for predicting energy harvesting in Saudi Arabia," Das says.

Research paper


Related Links
King Abdullah University Of Science and Technology (KAUST)
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
A breakthrough astrophysics code rapidly models stellar collisions
Baton Rouge LA (SPX) Apr 24, 2021
A breakthrough astrophysics code, named Octo-Tiger, simulates the evolution of self-gravitating and rotating systems of arbitrary geometry using adaptive mesh refinement and a new method to parallelize the code to achieve superior speeds. This new code to model stellar collisions is more expeditious than the established code used for numerical simulations. The research came from a unique collaboration between experimental computer scientists and astrophysicists in the Louisiana State University De ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Will your future clothes be made of algae?

Incentives could turn costs of biofuel mandates into environmental benefits

Dominating fungus could be solution to producing more biofuels and chemicals

Hydrocracking our way to recycling plastic waste

STELLAR CHEMISTRY
Robotic solution for disinfecting food production plants wins agribusiness prize

Artificial intelligence can boost power, efficiency of even the best microscopes

New brain-like computing device mimics associative learning

AI, captain! First autonomous ship prepares for maiden voyage

STELLAR CHEMISTRY
Vertical turbines could be the future for wind farms

Researchers working to further develop monopile production for offshore wind farms

Blowing in the wind: Fishermen threaten South Korea carbon plans

In Texas, a rancher swaps his oil pumps for wind turbines

STELLAR CHEMISTRY
Uber loss narrows as it hopes to rev shared rides

China's transition to electric vehicles

Simulation tests for the certification of automated veicles

Daimler and Volvo promise fuel-cell trucks by 2025

STELLAR CHEMISTRY
Electric vehicle batteries: The older they get, the safer they are

Renewable energy sources: On the way towards large-scale thermal storage systems

Denmark's largest battery - one step closer to storing green power in stones

On course to create a fusion power plant

STELLAR CHEMISTRY
Seeking enhanced materials for nuclear reactors

India closer to building world's biggest nuclear plant: EDF

Sri Lanka expels ship carrying nuclear material for China

Czechs ban Rosatom from nuclear tender, rule out Sputnik vaccine

STELLAR CHEMISTRY
French parliament to vote new climate law criticised by green groups

Germany's struggling Social Democrats push green credentials

Germany sets more ambitious climate goals after landmark ruling

Reducing methane emissions by 45% can achieve Paris goals

STELLAR CHEMISTRY
Deforestation of Brazilian Amazon hits record in April

Supermarkets threaten Brazil boycott over deforestation

Brazilian Amazon released more carbon than it stored in 2010s

Forest measuring satellite passes tests with flying colours









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.