Solar Energy News  
TECTONICS
Strength of tectonic plates may explain shape of the Tibetan Plateau
by Staff Writers
Champaign IL (SPX) Jul 25, 2017


"The asymmetric shape and complex subsurface structure of the Tibetan Plateau make its formation one of the most significant outstanding questions in the study of plate tectonics today," said University of Illinois geology professor and study co-author Lijun Liu.

Geoscientists have long puzzled over the mechanism that created the Tibetan Plateau, but a new study finds that the landform's history may be controlled primarily by the strength of the tectonic plates whose collision prompted its uplift. Given that the region is one of the most seismically active areas in the world, understanding the plateau's geologic history could give scientists insight to modern day earthquake activity.

The new findings are published in the journal Nature Communications.

Even from space, the Tibetan Plateau appears huge. The massive highland, formed by the convergence of two continental plates, India and Asia, dwarfs other mountain ranges in height and breadth. Most other mountain ranges appear like narrow scars of raised flesh, while the Himalaya Plateau looks like a broad, asymmetrical scab surrounded by craggy peaks.

"The asymmetric shape and complex subsurface structure of the Tibetan Plateau make its formation one of the most significant outstanding questions in the study of plate tectonics today," said University of Illinois geology professor and study co-author Lijun Liu.

In the classic model of Tibetan Plateau formation, a fast-moving Indian continental plate collides head-on with the relatively stationary Asian plate about 50 million years ago. The convergence is likely to have caused the Earth's crust to bunch up into the massive pile known as the Himalaya Mountains and Tibetan Plateau seen today, but this does not explain why the plateau is asymmetrical, Liu Said.

"The Tibetan Plateau is not uniformly wide," said Lin Chen, the lead author from the Chinese Academy of Sciences. "The western side is very narrow and the eastern side is very broad - something that many past models have failed to explain."Many of those past models have focused on the surface geology of the actual plateau region, Liu said, but the real story might be found further down, where the Asian and Indian plates meet.

"There is a huge change in topography on the plateau, or the Asian plate, while the landform and moving speed of the Indian plate along the collision zone are essentially the same from west to east," Liu said. "Why does the Asian plate vary so much?"

To address this question, Liu and his co-authors looked at what happens when tectonic plates made from rocks of different strengths collide. A series of 3-D computational continental collision models were used to test this idea.

"We looked at two scenarios - a weak Asian plate and a strong Asian plate," said Liu. "We kept the incoming Indian plate strong in both models."

When the researchers let the models run, they found that a strong Asian plate scenario resulted in a narrow plateau. The weak Asian plate model produced a broad plateau, like what is seen today.

"We then ran a third scenario which is a composite of the strong and weak Asian plate models," said Liu. "An Asian plate with a strong western side and weak eastern side results in an orientation very similar to what we see today."

This model, besides predicting the surface topography, also helps explain some of the complex subsurface structure seen using seismic observation techniques.

"It is exciting to see that such a simple model leads to something close to what we observe today," Liu said. "The location of modern earthquake activity and land movement corresponds to what we predict with the model, as well."

Research Report: "Crustal rheology controls on the Tibetan plateau formation during India-Asia convergence"

TECTONICS
Scientists shed light on carbon's descent into the deep Earth
Washington DC (SPX) Jul 21, 2017
Examining conditions within the Earth's interior is crucial not only to give us a window back to Earth's history but also to understand the current environment and its future. This study, published in Nature Communications, offers an explanation of carbon's descent into the deep Earth. "The stability regions of carbonates are key to understanding the deep carbon cycle and the role of the d ... read more

Related Links
University of Illinois at Urbana-Champaign
Tectonic Science and News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
Algae cultivation technique could advance biofuels

Fungi that evolved to eat wood offer new biomass conversion tool

How enzymes produce hydrogen

New biofuel technology significantly cuts production time

TECTONICS
Australia's robo-footballers go for gold at world champs

A robot that grows

Stanford researchers develop a new type of soft, growing robot

Rovers drive through Tenerife darkness

TECTONICS
ABB wins $30 million order to support integration of offshore wind energy in the UK

GE's renewables not enough to boost overall revenue

Unbalanced wind farm planning exacerbates fluctuations

Algeria seen as African leader for renewable energy

TECTONICS
Cartel probe looms over German car industry

Audi voluntarily recalls up to 850,000 diesel vehicles

World gears up for electric cars despite bumps in road

UK to ban sale of petrol and diesel cars by 2040

TECTONICS
New chromium-based superconductor has an unusual electronic state

Molecular microscopy illuminates molecular motor motion

High-temperature superconductivity in B-doped Q-carbon

First direct observation and measurement of ultra-fast moving vortices in superconductors

TECTONICS
Underwater robot probes inside Fukushima reactor

Finland's TVO claims partial win in Areva nuclear dispute

Laser-Armed Nuclear Icebreakers: What Russia Has in Store for Arctic

Britain must leave EU nuclear body: Verhofstadt

TECTONICS
India must rethink infrastructure needs for 100 new 'smart' cities to be sustainable

Allowable 'carbon budget' most likely overestimated

Sparkling springs aid quest for underground heat energy sources

Google's 'moonshot' factory spins off geothermal unit

TECTONICS
Paying farmers not to cut down trees in Uganda helps fight climate change

Eucalyptus gets the chop after deadly Portugal forest fires

Amazon Makes Its Own Rainy Season

EU hauls Poland to top court over ancient forest logging









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.