Solar Energy News  
ICE WORLD
Stronger overturning circulation in the Pacific during the last glacial period
by Staff Writers
Oldenburg, Germany (SPX) Jul 14, 2022

The Pacific Ocean today as seen by OSIRIS-REx.

Located between Australia and New Zealand, the Tasman Sea is an important but so far neglected component of the global ocean conveyor belt. Now a new study has discovered evidence that this marginal sea in the South Pacific also played an important role in the exchange of water masses between the large ocean basins during the last ice age.

These findings will help to refine climate models and improve our understanding of ocean circulation and carbon storage in the sea, an international team of researchers led by geoscientist Dr Torben Struve from the University of Oldenburg reports in the journal Nature Communications.

In their study the researchers examined 62 fossil specimens of the stony coral Desmophyllum dianthus. These were collected by the underwater remotely operated vehicle JASON during a research expedition south of Tasmania at depths between 1,400 and 1,700 metres. According to dating analysis, these animals lived about 10,000 to 70,000 years ago, a period that included the peak and end of the last glacial period.

"The corals grow in areas with strong currents and turbulence that inhibit the deposition of sediment," explained Struve, who conducts research in the Marine Isotope Geochemistry group at the University of Oldenburg's Institute for Chemistry and Biology of the Marine Environment.

Because the skeletons of these sedentary animals record the chemical fingerprint of the surrounding seawater, complex analyses can reveal the chemical composition of the ocean at the corresponding water depth during the corals' lifetime. This in turn provided clues about which water masses flowed through the Tasman Sea at the time. "These cold-water corals are a particularly good archive for studying the chemical composition of deep ocean currents in the past," Struve explained.

Young water flowed through the depths of the Tasman Sea
In their study the researchers focused specifically on the ratio of different variants of the trace element neodymium, some of which are produced by radioactive decay and are commonly referred to as radiogenic isotopes. The analysis showed that water from the Pacific Ocean flowed through the depths of the Tasman Sea around the peak of the ice age - as indicated by the relatively high content of radiogenic neodymium in the coral samples.

The investigations also showed that this water from the Pacific had been in contact with the sea surface relatively recently compared to other water masses in the same depth range, or in other words, that it had been relatively "young".

As the team writes in their paper, the data supports a scenario in which the upper Pacific Ocean was more mixed during the last ice age than it is today - while at the same time the deepest layers were more isolated from the atmosphere, which contributed to the long-term storage of carbon dioxide and the cooler glacial climate.

According to the new study, the circulation patterns during the last glacial period would have looked like this: in the North Pacific, surface water sank to a depth of about 2,000 metres and then spread a long way southward. After flowing around the southern tip of the Australian island of Tasmania, this water could have flowed into the Indian Ocean where it joined the global "conveyor belt" of ocean currents and reinforced it.

This conveyor belt plays an important role in distributing heat among the various ocean basins: the warm North Atlantic Current, for example, is responsible for the comparatively mild climate in northwestern Europe. From the North Atlantic, the circulation extends across the Antarctic Circumpolar Current and the Indian Ocean to the northern Pacific - and then back again. In today's system, the water in the North Pacific is the oldest, meaning that the last contact with the surface occurred a very long time ago.

The historical view allocated the return flow of this conveyor belt to the Indian Ocean mainly to a relatively shallow strait north of Australia. However, recent studies suggest that the outflow of Pacific waters through the Tasman Sea is also significantly involved in the exchange of water masses between ocean basins - albeit at shallower depths than during the last glacial interval.

It is possible that up to half of the water flowing northwards within the global conveyor belt in the Atlantic today originated in the area south of Australia. "Our study contributes to a better understanding of the dynamics of this global ocean circulation system under changing climatic conditions," said Struve. Now there is evidence that there was a close link between changes in the deep Tasman outflow and circulation changes in the Pacific Ocean during the last glacial period.

Research Report:A deep Tasman outflow of Pacific waters during the last glacial period


Related Links
University of Oldenburg
Beyond the Ice Age


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ICE WORLD
Death toll climbs to 11 in Italy glacier collapse
Rome (AFP) July 9, 2022
The number of people killed in an avalanche in the Italian Dolomites rose to 11 on Saturday, which was expected to be the final death toll, police said. A section of Italy's biggest Alpine glacier gave way last Sunday, sending ice and rock hurtling down the mountain, in a disaster blamed by officials on climate change. "We have identified all the victims," said Colonel Giampietro Lago, from the police scientific department. "We've reached a toll of 11. As of today, we have no indications to ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
MSU researchers create method for breaking down plant materials for earth-friendly energy

Solar-powered chemistry uses CO2 and H2O to make feedstock for fuels, chemicals

Technologies boost potential for carbon dioxide conversion to useful products

Study points to Armenian origins of ancient crop with aviation biofuel potential

ICE WORLD
Bees' 'waggle dance' may revolutionize how robots talk to each other in disaster zones

Shapeshifting microrobots can brush and floss teeth

Rover plus astronaut complete Mount Etna challenge

Building explainability into the components of machine-learning models

ICE WORLD
Modern wind turbines can more than compensate for decline in global wind resource

End-of-life plan needed for tens of thousands of wind turbine blades

Engineers develop cybersecurity tools to protect solar, wind power on the grid

1500 sensors for the rotor blades of the future

ICE WORLD
Vienna's horse-drawn carriages feel the heat

Chinese ride-hailing giant Didi hit with $1.2 bn fine

Stellantis ending Jeep production in China

Hit by China shutdown, Tesla boosts auto prices and sells bitcoin

ICE WORLD
Fusion's newest ambassador at MIT

Sumitomo invests in TAE Technologies for Fusion Reactor development

PPPL scientists propose solution to a long-puzzling fusion problem

Longer lasting sodium-ion batteries on the horizon

ICE WORLD
UK approves major new nuclear plant

Russia shelling from Europe's largest nuclear plant: Ukraine agency

France to launch buy-out of power giant EDF

Better estimating the risk of coastal flooding for nuclear power plants

ICE WORLD
Debunking the myths that discourage public funding of clean energy

Biden to announce new action on climate in major speech

UK climate chief hints at resignation as Tory race heats up

Solar Energy - It's Time to Harness the Sun's Energy

ICE WORLD
Brazilian Amazon lost 18 trees per second in 2021: report

California wildfire threat to Yosemite giant sequoias 'almost gone'

Race to find Brazil Amazon species before they disappear

The risky business of Amazonian tree climbers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.