Solar Energy News  
ABOUT US
Study Reveals Neural Basis Of Rapid Brain Adaptation

Biomedical engineers Garrett Stanley (standing) and research scientist Qi Wang plan to use the new techniques they developed to further probe the degree of synchronization of neurons in the brain because a variety of different diseases and disorders act to change the synchronization and cause harmful effects. Credit: Georgia Tech/Gary Meek
by Staff Writers
Atlanta GA (SPX) Nov 23, 2010
You detect an object flying at your head. What do you do? You probably first move out of the way - and then you try to determine what the object is. Your brain is able to quickly switch from detecting an object moving in your direction to determining what the object is through a phenomenon called adaptation.

A new study in the Nov. 21 advance online edition of the journal Nature Neuroscience details the biological basis of this ability for rapid adaptation: neurons located at the beginning of the brain's sensory information pathway that change their level of simultaneous firing.

This modification in neuron firing alters the nature of the information being relayed, which enhances the brain's ability to discriminate between different sensations - at the expense of degrading its ability to detect the sensations themselves.

"Previous studies have focused on how brain adaptation influences how much information from the outside world is being transmitted by the thalamus to the cortex, but we show that it is also important to focus on what information is being transmitted," said Garrett Stanley, an associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

In addition to Stanley, Coulter Department research scientist Qi Wang and Harvard Medical School Neurobiology Department research fellow Roxanna Webber contributed to this work, which is supported by the National Institutes of Health.

For the experiments, Stanley and Wang moved a rat's whisker to generate a sensory input. Moving whiskers at different speeds or at different angles produced sensory inputs that could be discriminated.

This sensory experience is analogous to an individual moving a fingertip across a surface and perceiving the surface as smooth or rough. While the whiskers were being moved, the researchers recorded neural signals simultaneously from different parts of the animal's brain to determine what information was being transmitted.

"Neuroscientists know a lot about different parts of the brain, but we don't know a lot about how they talk to each other. Recording how neurons are simultaneously communicating with each other in different parts of the brain and studying how the communication changes in different situations is a big step in this field," said Stanley.

The results from the experiments showed that adaptation shifted neural activity from a state in which the animal was good at detecting the presence of a sensory input to a state in which the animal was better at discriminating between sensory inputs.

In addition, adaptation enhanced the ability to discriminate between deflections of the whiskers in different angular directions, pointing to a general phenomenon.

"Adaptation differentially influences the thalamus and cortex in a manner that fundamentally changes the nature of information conveyed about whisker motion," explained Stanley.

"Our results provide a direct link between the long-observed phenomenon of enhanced sensory performance with adaptation and the underlying neurophysiological representation in the primary sensory cortex."

The thalamus serves as a relay station between the outside world and the cortex. Areas of the cortex receive and process information related to vision, audition and touch from the thalamus.

The study also revealed that information the cortex receives from the thalamus is transformed as it travels through the pathway due to a change in the level of simultaneous firing of neurons in the thalamus.

The researchers found that the effect of adaptation on the synchrony of neurons in the thalamus was the key element in the shift between sensory input detection and discrimination.

"There is a switching of the circuit to a different function. The same neurons do two different things and switch quickly, in a matter of seconds or milliseconds, through a change in the synchronization across neurons," explained Stanley. "If we think of the neurons firing like members of an audience clapping hands, then the sound of the clapping becomes louder when they all clap together."

In the future, the techniques used in this study may be valuable for probing the effects of brain injury on this pathway and others, as a variety of different diseases and disorders act to change the degree of synchronization of neurons in the brain, resulting in harmful effects.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Georgia Institute of Technology
All About Human Beings and How We Got To Be Here



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


ABOUT US
Origin Of Cells Associated With Nerve Repair Discovered
Cambridge, UK (SPX) Nov 16, 2010
Scientists have discovered the origin of a unique type of cell known for its ability to support regeneration in the central nervous system. Their findings, published this week in the journal Proceedings of the National Academy of Sciences USA (PNAS), raise the possibility of obtaining a more reliable source of these cells for use in cell transplantation therapy for spinal cord injuries. Ol ... read more







ABOUT US
Diverse Coalition Files Lawsuit To Overturn EPA's 'E15' Decision

Rentech's Synthetic RenDiesel Fuels Audi A3 TDI

CARB Will Cut LCFS Penalty For Ethanol In Half

NACF: USDA Program Could Be A Biomass Boon

ABOUT US
Development Of Humanoid Robot To Test Warfighter Protection Equipment

Robo-Op Marks New World First For Heart Procedure

NASA NIA To Sponsor Student Planetary Rover Challenge

Virtual Flight On A Robotic Arm

ABOUT US
GL Garrad Hassan Chosen For SMart Wind's 'Hornsea' Zone

Enhancing The Efficiency Of Wind Turbines

Argentina adds wind to energy portfolio

Poland's Solidarity shipyard turns to wind turbines

ABOUT US
World Debut Of Honda Fit EV Concept Electric Vehicle

Daewoo, Doosan in Indonesian vehicle deal

China's SAIC buys 500-million-dollar stake in General Motors

Toyota unveils hybrid car push

ABOUT US
Oil Will Run Dry Before Substitutes Roll Out

Conductor Paths For Marvelous Light

GE Opens New Oil And Gas Subsea Test Facility

Iran Says Crude Price At $100 Not To Hurt World Economy

ABOUT US
EMPA Identifies Reaction Pathway To Fabricate Graphene-Like Materials

Strength Of Graphene Lies In Its Defects

Novel Ocean-Crust Mechanism Could Affect Global Carbon Budget

Carbon price needed to end costly uncertainty: Australia PM

ABOUT US
LockMart Continues Ocean Thermal Energy Conversion

China admits it is the world's biggest polluter

US Foodservice Deploys Orion Energy Systems LED Technology

German regulator wants 'energy Schengen'

ABOUT US
Indonesia's billion-dollar forest deal in danger: Greenpeace

Cameroon Timber Tax Shows Problems Distributing REDD Payments To Locals

Macedonia plants seven million trees to revive its forests

'Forgotten' forests store carbon


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement