Subscribe free to our newsletters via your
. Solar Energy News .




DEEP IMPACT
Study finds new evidence supporting theory of extraterrestrial impact
by Staff Writers
Santa Barbara CA (SPX) Jun 12, 2012


These are microscopic images of grains of melted quartz from the YDB cosmic impact layer at Abu Hureyra, Syria, showing evidence of burst bubbles and flow textures that resulted from the melting and boiling of rock at very high temperatures. (Light microscope image at left; SEM image at right.) Credit: UCSB.

18-member international team of researchers that includes James Kennett, professor of earth science at UC Santa Barbara, has discovered melt-glass material in a thin layer of sedimentary rock in Pennsylvania, South Carolina, and Syria. According to the researchers, the material - which dates back nearly 13,000 years - was formed at temperatures of 1,700 to 2,200 degrees Celsius (3,100 to 3,600 degrees Fahrenheit), and is the result of a cosmic body impacting Earth.

These new data are the latest to strongly support the controversial Younger Dryas Boundary (YDB) hypothesis, which proposes that a cosmic impact occurred 12,900 years ago at the onset of an unusual cold climatic period called the Younger Dryas.

This episode occurred at or close to the time of major extinction of the North American megafauna, including mammoths and giant ground sloths; and the disappearance of the prehistoric and widely distributed Clovis culture. The researchers' findings appear in the Proceedings of the National Academy of Sciences.

"These scientists have identified three contemporaneous levels more than 12,000 years ago, on two continents yielding siliceous scoria-like objects (SLO's)," said H. Richard Lane, program director of National Science Foundation's Division of Earth Sciences, which funded the research.

"SLO's are indicative of high-energy cosmic airbursts/impacts, bolstering the contention that these events induced the beginning of the Younger Dryas. That time was a major departure in biotic, human and climate history."

Morphological and geochemical evidence of the melt-glass confirms that the material is not cosmic, volcanic, or of human-made origin. "The very high temperature melt-glass appears identical to that produced in known cosmic impact events such as Meteor Crater in Arizona, and the Australasian tektite field," said Kennett.

"The melt material also matches melt-glass produced by the Trinity nuclear airburst of 1945 in Socorro, New Mexico," he continued. "The extreme temperatures required are equal to those of an atomic bomb blast, high enough to make sand melt and boil."

The material evidence supporting the YDB cosmic impact hypothesis spans three continents, and covers nearly one-third of the planet, from California to Western Europe, and into the Middle East.

The discovery extends the range of evidence into Germany and Syria, the easternmost site yet identified in the northern hemisphere. The researchers have yet to identify a limit to the debris field of the impact.

"Because these three sites in North America and the Middle East are separated by 1,000 to 10,000 kilometers, there were most likely three or more major impact/airburst epicenters for the YDB impact event, likely caused by a swarm of cosmic objects that were fragments of either a meteorite or comet," said Kennett.

The PNAS paper also presents examples of recent independent research that supports the YDB cosmic impact hypothesis, and supports two independent groups that found melt-glass in the YDB layers in Arizona and Venezuela. "The results strongly refute the assertion of some critics that 'no one can replicate' the YDB evidence, or that the materials simply fell from space non-catastrophically," Kennett noted.

He added that the archaeological site in Syria where the melt-glass material was found - Abu Hureyra, in the Euphrates Valley - is one of the few sites of its kind that record the transition from nomadic hunter-gatherers to farmer-hunters who live in permanent villages.

"Archeologists and anthropologists consider this area the 'birthplace of agriculture,' which occurred close to 12,900 years ago," Kennett said.

"The presence of a thick charcoal layer in the ancient village in Syria indicates a major fire associated with the melt-glass and impact spherules 12,900 years ago," he continued. "Evidence suggests that the effects on that settlement and its inhabitants would have been severe."

Other scientists contributing to the research include Ted Bunch and James H. Wittke of Northern Arizona University; Robert E. Hermes of Los Alamos National Laboratory; Andrew Moore of the Rochester Institute of Technology; James C. Weaver of Harvard University; Douglas J. Kennett of Pennsylvania State University; Paul S. DeCarli of SRI International; James L. Bischoff of the U.S. Geological Survey; Gordon C. Hillman of the University College London; George A. Howard of Restoration Systems; David R. Kimbel of Kimstar Research; Gunther Kletetschka of Charles University in Prague, and of the Czech Academy of Science; Carl Lipo and Sachiko Sakai of California State University, Long Beach; Zsolt Revay of the Technical University of Munich in Germany; Allen West of GeoScience Consulting; and Richard B. Firestone of Lawrence Berkeley National Laboratory.

.


Related Links
University of California - Santa Barbara
Asteroid and Comet Impact Danger To Earth - News and Science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








DEEP IMPACT
Hazardous Near Earth Objects - Communicating the Risk
Washington DC (SPX) Jun 07, 2012
To deal with potentially hazardous Near Earth Objects (NEOs) that could strike the Earth, there is need to establish an effective international communications strategy - but doing so is a daunting task, one that demands effective use of mass communication tools. That key view is addressed in The Near Earth Object Media/Risk Communications Working Group Report issued by Secure World Foundat ... read more


DEEP IMPACT
Environmental benefit of biofuels is overestimated, new study claims

Steel-Strength Plastics That Are Clean And Green

Bigger refuges needed to delay pest resistance to biotech corn

Gasification may convert mesquite and juniper wood to a usable bioenergy

DEEP IMPACT
Robotics helps us become more competitive

Robotic jellyfish could one day patrol oceans, clean oil spills, and detect pollutants

Graphene-control cutting using an atomic force microscope-based nanorobot

Rescue robot tested at So. Calif. beach

DEEP IMPACT
Change in air as Africa's biggest wind farm set for Kenya

Wind Powering An Island Economy

China Leads Growth in Global Wind Power Capacity

US slaps duties on Chinese wind towers

DEEP IMPACT
US battery maker claims electric car breakthrough

Sao Paulo struggles to upgrade creaking transport system

China auto sales rise 16% in May

Chinese and Japanese investors bid for Saab

DEEP IMPACT
US exempts India, but not China, from Iran sanctions

Iraq looks to raise profile with OPEC candidate

Oil slick threatens drinking water supply of Canadian town

Philippine churches turn on Manila over US troops

DEEP IMPACT
20,000 tonnes of uranium found in Jordan: joint venture

Japan's PM wants nuclear reactor restarts

Japan PM renews plea for nuclear restart

Russia supports 'peaceful' nuclear drive in Iran

DEEP IMPACT
TEPCO to buy 1 million tons LNG a year from Qatar

Nuclear and coal-fired electrical plants vulnerable to climate change

American Electric Power Pulls Billion Dollar Big Sandy Request

US and European energy supplies vulnerable to climate change

DEEP IMPACT
Forests could be global warming factor

Teaching tree-thinking through touch

EO consortium to help fight global deforestation

Bamboo points way to green construction in Indonesia's Bali




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement